rcl/rcl_yaml_param_parser/src/parser.c
anup-pem 5edf27b032 YAML parameter parser (#235)
* Implement a basic YAML based parameter parser for ros2 nodes

* Add README file

* Fix the issues after moving from rcutils_yaml_param_parser to rcl_yaml_param_parser

  - rename folders from rcutils_yaml_param_parser to rcl_yaml_param_parser
  - rename project, header guards and include statements from rcutils_yaml_param_parser to rcl_yaml_param_parser
  - move type declaration in separat file and namespace new structures
  - Fix the code review comments from Mikael

* Few minor changes

   - Changed "params" string to "ros__parameters"
   - Add -Wall, -Wextra and -Wpedantic falgs
   - Fix the compile warning with the new flags

* Fix the changes made in the design of C structure

  - Remove the node_namespaces entry in rcl_params_t
  - Change the type of num_nodes and num_params to size_t

* depend on libyaml_vendor (#236)

* Fix cmake setting standard(C and C++) and add byte_array in C struct

*   Remove C11 so that it defaults to C99

* [rcl_yaml_param_parser] fix export symbols (#237)

* add visibility macros

* remove unused macro

* Support for multi level node and parameter name spaces

* Additional fixes and cleanups

  - Support for string namespace seperator
  - Provide parameter structure init function API
  - name cleanups

* off by 1

* Call yaml_parser_delete()

* fclose(yaml_file)

* free() allocated paths

* Call yaml_event_delete()

* completely deallcoate string array

* Few cleanup changes

  - Add install command into CMakelists.txt
  - Replace one of the zero_allocate with reallocate
  - Pass allocator state
  - Fix int32_t -> rcl_ret_t return value

* Don't include unistd.h

* Use size_t for array indices

* Just pass the allocator in the init function
2018-05-29 18:07:02 +02:00

1384 lines
43 KiB
C

// Copyright 2018 Apex.AI, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <yaml.h>
#include "rcl_yaml_param_parser/parser.h"
#include "rcl_yaml_param_parser/types.h"
#include "rcl/error_handling.h"
#include "rcl/types.h"
#include "rcutils/strdup.h"
/// NOTE: Will allow a max YAML mapping depth of 5
/// map level 1 : Node name mapping
/// map level 2 : Params mapping
typedef enum yaml_map_lvl_e
{
MAP_UNINIT_LVL = 0U,
MAP_NODE_NAME_LVL = 1U,
MAP_PARAMS_LVL = 2U,
} yaml_map_lvl_t;
/// Basic supported data types in the yaml file
typedef enum data_types_e
{
DATA_TYPE_UNKNOWN = 0U,
DATA_TYPE_BOOL = 1U,
DATA_TYPE_INT64 = 2U,
DATA_TYPE_DOUBLE = 3U,
DATA_TYPE_STRING = 4U
} data_types_t;
typedef enum namespace_type_e
{
NS_TYPE_NODE = 1U,
NS_TYPE_PARAM = 2U
} namespace_type_t;
/// Keep track of node and parameter name spaces
typedef struct namespace_tracker_s
{
char * node_ns;
uint32_t num_node_ns;
char * parameter_ns;
uint32_t num_parameter_ns;
} namespace_tracker_t;
#define MAX_STRING_SIZE 128U
#define PARAMS_KEY "ros__parameters"
#define NODE_NS_SEPERATOR "/"
#define PARAMETER_NS_SEPERATOR "."
#define MAX_NUM_NODE_ENTRIES 256U
#define MAX_NUM_PARAMS_PER_NODE 512U
static rcl_ret_t node_params_init(
rcl_node_params_t * node_params,
const rcl_allocator_t allocator);
static rcl_ret_t add_val_to_bool_arr(
rcl_bool_array_t * const val_array,
bool * value,
const rcl_allocator_t allocator);
static rcl_ret_t add_val_to_int_arr(
rcl_int64_array_t * const val_array,
int64_t * value,
const rcl_allocator_t allocator);
static rcl_ret_t add_val_to_double_arr(
rcl_double_array_t * const val_array,
double * value,
const rcl_allocator_t allocator);
static rcl_ret_t add_val_to_string_arr(
rcutils_string_array_t * const val_array,
char * value,
const rcl_allocator_t allocator);
///
/// TODO (anup.pemmaiah): Support byte array
///
static rcl_ret_t add_name_to_ns(
namespace_tracker_t * ns_tracker,
const char * name,
const namespace_type_t namespace_type,
rcl_allocator_t allocator);
static rcl_ret_t rem_name_from_ns(
namespace_tracker_t * ns_tracker,
const namespace_type_t namespace_type,
rcl_allocator_t allocator);
static rcl_ret_t replace_ns(
namespace_tracker_t * ns_tracker,
char * const new_ns,
const uint32_t new_ns_count,
const namespace_type_t namespace_type,
rcl_allocator_t allocator);
static void * get_value(
const char * const value,
data_types_t * val_type,
const rcl_allocator_t allocator);
static rcl_ret_t parse_value(
const yaml_event_t event,
const bool is_seq,
data_types_t * seq_data_type,
rcl_params_t * params_st);
static rcl_ret_t parse_key(
const yaml_event_t event,
uint32_t * map_level,
bool * is_new_map,
namespace_tracker_t * ns_tracker,
rcl_params_t * params_st);
static rcl_ret_t parse_events(
yaml_parser_t * parser,
namespace_tracker_t * ns_tracker,
rcl_params_t * params_st);
///
/// Add name to namespace tracker
///
static rcl_ret_t add_name_to_ns(
namespace_tracker_t * ns_tracker,
const char * name,
const namespace_type_t namespace_type,
rcl_allocator_t allocator)
{
char * cur_ns;
uint32_t * cur_count;
char * sep_str;
size_t name_len;
size_t ns_len;
size_t sep_len;
size_t tot_len;
rcl_ret_t res = RCL_RET_OK;
switch (namespace_type) {
case NS_TYPE_NODE:
cur_ns = ns_tracker->node_ns;
cur_count = &(ns_tracker->num_node_ns);
sep_str = NODE_NS_SEPERATOR;
break;
case NS_TYPE_PARAM:
cur_ns = ns_tracker->parameter_ns;
cur_count = &(ns_tracker->num_parameter_ns);
sep_str = PARAMETER_NS_SEPERATOR;
break;
default:
res = RCL_RET_ERROR;
break;
}
if (RCL_RET_OK == res) {
/// Add a name to ns
if (NULL == name) {
return RCL_RET_INVALID_ARGUMENT;
}
if (0U == *cur_count) {
cur_ns = rcutils_strdup(name, allocator);
if (NULL == cur_ns) {
return RCL_RET_BAD_ALLOC;
}
} else {
ns_len = strlen(cur_ns);
name_len = strlen(name);
sep_len = strlen(sep_str);
tot_len = ns_len + name_len + sep_len + 1U;
if (tot_len > MAX_STRING_SIZE) {
RCL_SET_ERROR_MSG("New namespace string is exceeding max string size",
allocator);
return RCL_RET_ERROR;
}
cur_ns = allocator.reallocate(cur_ns, tot_len, allocator.state);
if (NULL == cur_ns) {
return RCL_RET_BAD_ALLOC;
}
memmove((cur_ns + ns_len), sep_str, sep_len);
memmove((cur_ns + ns_len + sep_len), name, name_len);
cur_ns[tot_len - 1U] = '\0';
}
*cur_count = (*cur_count + 1U);
if (NS_TYPE_NODE == namespace_type) {
ns_tracker->node_ns = cur_ns;
} else {
ns_tracker->parameter_ns = cur_ns;
}
}
return res;
}
///
/// Remove name from namespace tracker
///
static rcl_ret_t rem_name_from_ns(
namespace_tracker_t * ns_tracker,
const namespace_type_t namespace_type,
rcl_allocator_t allocator)
{
char * cur_ns;
uint32_t * cur_count;
char * sep_str;
size_t ns_len;
size_t tot_len;
rcl_ret_t res = RCL_RET_OK;
switch (namespace_type) {
case NS_TYPE_NODE:
cur_ns = ns_tracker->node_ns;
cur_count = &(ns_tracker->num_node_ns);
sep_str = NODE_NS_SEPERATOR;
break;
case NS_TYPE_PARAM:
cur_ns = ns_tracker->parameter_ns;
cur_count = &(ns_tracker->num_parameter_ns);
sep_str = PARAMETER_NS_SEPERATOR;
break;
default:
res = RCL_RET_ERROR;
break;
}
if (RCL_RET_OK == res) {
/// Remove last name from ns
if (*cur_count > 0U) {
if (1U == *cur_count) {
allocator.deallocate(cur_ns, allocator.state);
cur_ns = NULL;
} else {
ns_len = strlen(cur_ns);
char * last_idx = NULL;
char * next_str = NULL;
const char * end_ptr = (cur_ns + ns_len);
next_str = strstr(cur_ns, sep_str);
while (NULL != next_str) {
if (next_str > end_ptr) {
RCL_SET_ERROR_MSG("Internal error. Crossing arrau boundary", allocator);
return RCL_RET_ERROR;
}
last_idx = next_str;
next_str = (next_str + strlen(sep_str));
next_str = strstr(next_str, sep_str);
}
if (NULL != last_idx) {
tot_len = ((size_t)(last_idx - cur_ns) + 1U);
cur_ns = allocator.reallocate(cur_ns, tot_len, allocator.state);
if (NULL == cur_ns) {
return RCL_RET_BAD_ALLOC;
}
cur_ns[tot_len - 1U] = '\0';
}
}
*cur_count = (*cur_count - 1U);
}
if (NS_TYPE_NODE == namespace_type) {
ns_tracker->node_ns = cur_ns;
} else {
ns_tracker->parameter_ns = cur_ns;
}
}
return res;
}
///
/// Replace namespace in namespace tracker
///
static rcl_ret_t replace_ns(
namespace_tracker_t * ns_tracker,
char * const new_ns,
const uint32_t new_ns_count,
const namespace_type_t namespace_type,
rcl_allocator_t allocator)
{
rcl_ret_t res = RCL_RET_OK;
/// Remove the old namespace and point to the new namespace
switch (namespace_type) {
case NS_TYPE_NODE:
if (NULL != ns_tracker->node_ns) {
allocator.deallocate(ns_tracker->node_ns, allocator.state);
}
ns_tracker->node_ns = new_ns;
ns_tracker->num_node_ns = new_ns_count;
break;
case NS_TYPE_PARAM:
if (NULL != ns_tracker->parameter_ns) {
allocator.deallocate(ns_tracker->parameter_ns, allocator.state);
}
ns_tracker->parameter_ns = new_ns;
ns_tracker->num_parameter_ns = new_ns_count;
break;
default:
res = RCL_RET_ERROR;
break;
}
return res;
}
///
/// Create rcl_node_params_t structure
///
static rcl_ret_t node_params_init(
rcl_node_params_t * node_params,
const rcl_allocator_t allocator)
{
if (NULL == node_params) {
return RCL_RET_INVALID_ARGUMENT;
}
node_params->parameter_names = allocator.zero_allocate(MAX_NUM_PARAMS_PER_NODE,
sizeof(char *), allocator.state);
if (NULL == node_params->parameter_names) {
return RCL_RET_BAD_ALLOC;
}
node_params->parameter_values = allocator.zero_allocate(MAX_NUM_PARAMS_PER_NODE,
sizeof(rcl_variant_t), allocator.state);
if (NULL == node_params->parameter_values) {
allocator.deallocate(node_params->parameter_names, allocator.state);
return RCL_RET_BAD_ALLOC;
}
return RCL_RET_OK;
}
///
/// Create the rcl_params_t parameter structure
///
rcl_params_t * rcl_yaml_node_struct_init(
const rcl_allocator_t allocator)
{
rcl_params_t * params_st;
params_st = allocator.zero_allocate(1, sizeof(rcl_params_t), allocator.state);
if (NULL == params_st) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return NULL;
}
params_st->node_names = allocator.zero_allocate(MAX_NUM_NODE_ENTRIES,
sizeof(char *), allocator.state);
if (NULL == params_st->node_names) {
rcl_yaml_node_struct_fini(params_st);
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return NULL;
}
params_st->params = allocator.zero_allocate(MAX_NUM_NODE_ENTRIES, sizeof(rcl_node_params_t),
allocator.state);
if (NULL == params_st->params) {
rcl_yaml_node_struct_fini(params_st);
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return NULL;
}
params_st->num_nodes = 0U;
params_st->allocator = allocator;
return params_st;
}
///
/// Free param structure
/// NOTE: If there is an error, would recommend just to safely exit the process instead
/// of calling this free function and continuing
///
void rcl_yaml_node_struct_fini(
rcl_params_t * params_st)
{
uint32_t node_idx;
size_t parameter_idx = 0U;
rcl_allocator_t allocator;
if (NULL == params_st) {
return;
}
allocator = params_st->allocator;
for (node_idx = 0; node_idx < params_st->num_nodes; node_idx++) {
char * node_name = params_st->node_names[node_idx];
if (NULL != node_name) {
allocator.deallocate(node_name, allocator.state);
}
if (NULL != params_st->params) {
char * param_name;
rcl_variant_t * param_var;
for (parameter_idx = 0; parameter_idx < params_st->params[node_idx].num_params;
parameter_idx++)
{
if ((NULL != params_st->params[node_idx].parameter_names) &&
(NULL != params_st->params[node_idx].parameter_values))
{
param_name = params_st->params[node_idx].parameter_names[parameter_idx];
param_var = &(params_st->params[node_idx].parameter_values[parameter_idx]);
if (NULL != param_name) {
allocator.deallocate(param_name, allocator.state);
}
if (NULL != param_var) {
if (NULL != param_var->bool_value) {
allocator.deallocate(param_var->bool_value, allocator.state);
} else if (NULL != param_var->integer_value) {
allocator.deallocate(param_var->integer_value, allocator.state);
} else if (NULL != param_var->double_value) {
allocator.deallocate(param_var->double_value, allocator.state);
} else if (NULL != param_var->string_value) {
allocator.deallocate(param_var->string_value, allocator.state);
} else if (NULL != param_var->bool_array_value) {
if (NULL != param_var->bool_array_value->values) {
allocator.deallocate(param_var->bool_array_value->values, allocator.state);
}
allocator.deallocate(param_var->bool_array_value, allocator.state);
} else if (NULL != param_var->integer_array_value) {
if (NULL != param_var->integer_array_value->values) {
allocator.deallocate(param_var->integer_array_value->values, allocator.state);
}
allocator.deallocate(param_var->integer_array_value, allocator.state);
} else if (NULL != param_var->double_array_value) {
if (NULL != param_var->double_array_value->values) {
allocator.deallocate(param_var->double_array_value->values, allocator.state);
}
allocator.deallocate(param_var->double_array_value, allocator.state);
} else if (NULL != param_var->string_array_value) {
if (RCL_RET_OK != rcutils_string_array_fini(param_var->string_array_value)) {
// Log and continue ...
RCUTILS_SAFE_FWRITE_TO_STDERR("Error deallocating string array");
}
allocator.deallocate(param_var->string_array_value, allocator.state);
} else {
/// Nothing to do to keep pclint happy
}
} // if (param_var)
}
} // for (parameter_idx)
if (NULL != params_st->params[node_idx].parameter_values) {
allocator.deallocate(params_st->params[node_idx].parameter_values, allocator.state);
}
if (NULL != params_st->params[node_idx].parameter_names) {
allocator.deallocate(params_st->params[node_idx].parameter_names, allocator.state);
}
} // if (params)
} // for (node_idx)
if (NULL != params_st->node_names) {
allocator.deallocate(params_st->node_names, allocator.state);
params_st->node_names = NULL;
}
if (NULL != params_st->params) {
allocator.deallocate(params_st->params, allocator.state);
params_st->params = NULL;
}
params_st->num_nodes = 0U;
allocator.deallocate(params_st, allocator.state);
}
///
/// Dump the param structure
///
void rcl_yaml_node_struct_print(
const rcl_params_t * const params_st)
{
size_t node_idx;
size_t parameter_idx = 0U;
if (NULL == params_st) {
return;
}
printf("\n Node Name\t\t\t\tParameters\n");
for (node_idx = 0; node_idx < params_st->num_nodes; node_idx++) {
int32_t param_col = 50;
const char * const node_name = params_st->node_names[node_idx];
if (NULL != node_name) {
printf("%s\n", node_name);
}
if (NULL != params_st->params) {
char * param_name;
rcl_variant_t * param_var;
for (parameter_idx = 0; parameter_idx < params_st->params[node_idx].num_params;
parameter_idx++)
{
if ((NULL != params_st->params[node_idx].parameter_names) &&
(NULL != params_st->params[node_idx].parameter_values))
{
param_name = params_st->params[node_idx].parameter_names[parameter_idx];
param_var = &(params_st->params[node_idx].parameter_values[parameter_idx]);
if (NULL != param_name) {
printf("%*s", param_col, param_name);
}
if (NULL != param_var) {
if (NULL != param_var->bool_value) {
printf(": %s\n", *(param_var->bool_value) ? "true" : "false");
} else if (NULL != param_var->integer_value) {
printf(": %" PRId64 "\n", *(param_var->integer_value));
} else if (NULL != param_var->double_value) {
printf(": %lf\n", *(param_var->double_value));
} else if (NULL != param_var->string_value) {
printf(": %s\n", param_var->string_value);
} else if (NULL != param_var->bool_array_value) {
printf(": ");
for (size_t i = 0; i < param_var->bool_array_value->size; i++) {
if (param_var->bool_array_value->values) {
printf("%s, ",
(param_var->bool_array_value->values[i]) ? "true" : "false");
}
}
printf("\n");
} else if (NULL != param_var->integer_array_value) {
printf(": ");
for (size_t i = 0; i < param_var->integer_array_value->size; i++) {
if (param_var->integer_array_value->values) {
printf("%" PRId64 ", ", param_var->integer_array_value->values[i]);
}
}
printf("\n");
} else if (NULL != param_var->double_array_value) {
printf(": ");
for (size_t i = 0; i < param_var->double_array_value->size; i++) {
if (param_var->double_array_value->values) {
printf("%lf, ", param_var->double_array_value->values[i]);
}
}
printf("\n");
} else if (NULL != param_var->string_array_value) {
printf(": ");
for (size_t i = 0; i < param_var->string_array_value->size; i++) {
if (param_var->string_array_value->data[i]) {
printf("%s, ", param_var->string_array_value->data[i]);
}
}
printf("\n");
}
}
}
}
}
}
}
///
/// Add a value to a bool array. Create the array if it does not exist
///
static rcl_ret_t add_val_to_bool_arr(
rcl_bool_array_t * const val_array,
bool * value,
const rcl_allocator_t allocator)
{
if ((NULL == value) || (NULL == val_array)) {
return RCL_RET_INVALID_ARGUMENT;
}
if (NULL == val_array->values) {
val_array->values = value;
val_array->size++;
} else {
/// Increase the array size by one and add the new value
bool * tmp_arr = val_array->values;
val_array->values = allocator.zero_allocate(val_array->size + 1U, sizeof(bool),
allocator.state);
if (NULL == val_array->values) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
memmove(val_array->values, tmp_arr, (val_array->size * sizeof(bool)));
val_array->values[val_array->size] = *value;
val_array->size++;
allocator.deallocate(value, allocator.state);
allocator.deallocate(tmp_arr, allocator.state);
}
return RCL_RET_OK;
}
///
/// Add a value to an integer array. Create the array if it does not exist
///
static rcl_ret_t add_val_to_int_arr(
rcl_int64_array_t * const val_array,
int64_t * value,
const rcl_allocator_t allocator)
{
if ((NULL == value) || (NULL == val_array)) {
return RCL_RET_INVALID_ARGUMENT;
}
if (NULL == val_array->values) {
val_array->values = value;
val_array->size++;
} else {
/// Increase the array size by one and add the new value
int64_t * tmp_arr = val_array->values;
val_array->values = allocator.zero_allocate(val_array->size + 1U, sizeof(int64_t),
allocator.state);
if (NULL == val_array->values) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
memmove(val_array->values, tmp_arr, (val_array->size * sizeof(int64_t)));
val_array->values[val_array->size] = *value;
val_array->size++;
allocator.deallocate(value, allocator.state);
allocator.deallocate(tmp_arr, allocator.state);
}
return RCL_RET_OK;
}
///
/// Add a value to a double array. Create the array if it does not exist
///
static rcl_ret_t add_val_to_double_arr(
rcl_double_array_t * const val_array,
double * value,
const rcl_allocator_t allocator)
{
if ((NULL == value) || (NULL == val_array)) {
return RCL_RET_INVALID_ARGUMENT;
}
if (NULL == val_array->values) {
val_array->values = value;
val_array->size++;
} else {
/// Increase the array size by one and add the new value
double * tmp_arr = val_array->values;
val_array->values = allocator.zero_allocate(val_array->size + 1U, sizeof(double),
allocator.state);
if (NULL == val_array->values) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
memmove(val_array->values, tmp_arr, (val_array->size * sizeof(double)));
val_array->values[val_array->size] = *value;
val_array->size++;
allocator.deallocate(value, allocator.state);
allocator.deallocate(tmp_arr, allocator.state);
}
return RCL_RET_OK;
}
///
/// Add a value to a string array. Create the array if it does not exist
///
static rcl_ret_t add_val_to_string_arr(
rcutils_string_array_t * const val_array,
char * value,
const rcl_allocator_t allocator)
{
if ((NULL == value) || (NULL == val_array)) {
return RCL_RET_INVALID_ARGUMENT;
}
if (NULL == val_array->data) {
rcl_ret_t res;
res = rcutils_string_array_init(val_array, 1, &allocator);
if (RCL_RET_OK != res) {
return res;
}
val_array->data[0U] = value;
} else {
/// Increase the array size by one and add the new value
val_array->data = allocator.reallocate(val_array->data,
((val_array->size + 1U) * sizeof(char *)), allocator.state);
if (NULL == val_array->data) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
val_array->data[val_array->size] = value;
val_array->size++;
}
return RCL_RET_OK;
}
///
/// Determine the type of the value and return the converted value
/// NOTE: Only canonical forms supported as of now
///
static void * get_value(
const char * const value,
data_types_t * val_type,
const rcl_allocator_t allocator)
{
void * ret_val;
int64_t ival;
double dval;
char * endptr = NULL;
if ((NULL == value) || (NULL == val_type)) {
RCL_SET_ERROR_MSG("Invalid arguments", allocator);
return NULL;
}
/// Check if it is bool
if ((0 == strncmp(value, "Y", strlen(value))) ||
(0 == strncmp(value, "y", strlen(value))) ||
(0 == strncmp(value, "yes", strlen(value))) ||
(0 == strncmp(value, "Yes", strlen(value))) ||
(0 == strncmp(value, "YES", strlen(value))) ||
(0 == strncmp(value, "true", strlen(value))) ||
(0 == strncmp(value, "True", strlen(value))) ||
(0 == strncmp(value, "TRUE", strlen(value))) ||
(0 == strncmp(value, "on", strlen(value))) ||
(0 == strncmp(value, "On", strlen(value))) ||
(0 == strncmp(value, "ON", strlen(value))))
{
*val_type = DATA_TYPE_BOOL;
ret_val = allocator.zero_allocate(1U, sizeof(bool), allocator.state);
if (NULL == ret_val) {
return NULL;
}
*((bool *)ret_val) = true;
return ret_val;
}
if ((0 == strncmp(value, "N", strlen(value))) ||
(0 == strncmp(value, "n", strlen(value))) ||
(0 == strncmp(value, "no", strlen(value))) ||
(0 == strncmp(value, "No", strlen(value))) ||
(0 == strncmp(value, "NO", strlen(value))) ||
(0 == strncmp(value, "false", strlen(value))) ||
(0 == strncmp(value, "False", strlen(value))) ||
(0 == strncmp(value, "FALSE", strlen(value))) ||
(0 == strncmp(value, "off", strlen(value))) ||
(0 == strncmp(value, "Off", strlen(value))) ||
(0 == strncmp(value, "OFF", strlen(value))))
{
*val_type = DATA_TYPE_BOOL;
ret_val = allocator.zero_allocate(1U, sizeof(bool), allocator.state);
if (NULL == ret_val) {
return NULL;
}
*((bool *)ret_val) = false;
return ret_val;
}
/// Check for int
errno = 0;
ival = strtol(value, &endptr, 0);
if ((0 == errno) && (NULL != endptr)) {
if ((NULL != endptr) && (endptr != value)) {
if (('\0' != *value) && ('\0' == *endptr)) {
*val_type = DATA_TYPE_INT64;
ret_val = allocator.zero_allocate(1U, sizeof(int64_t), allocator.state);
if (NULL == ret_val) {
return NULL;
}
*((int64_t *)ret_val) = ival;
return ret_val;
}
}
}
/// Check for float
errno = 0;
endptr = NULL;
dval = strtod(value, &endptr);
if ((0 == errno) && (NULL != endptr)) {
if ((NULL != endptr) && (endptr != value)) {
if (('\0' != *value) && ('\0' == *endptr)) {
*val_type = DATA_TYPE_DOUBLE;
ret_val = allocator.zero_allocate(1U, sizeof(double), allocator.state);
if (NULL == ret_val) {
return NULL;
}
*((double *)ret_val) = dval;
return ret_val;
}
}
}
errno = 0;
/// It is a string
*val_type = DATA_TYPE_STRING;
ret_val = rcutils_strdup(value, allocator);
return ret_val;
}
///
/// Parse the value part of the <key:value> pair
///
static rcl_ret_t parse_value(
const yaml_event_t event,
const bool is_seq,
data_types_t * seq_data_type,
rcl_params_t * params_st)
{
void * ret_val;
data_types_t val_type;
int res = RCL_RET_OK;
rcl_allocator_t allocator;
if ((NULL == params_st) || (0U == params_st->num_nodes) || (NULL == seq_data_type)) {
return RCL_RET_INVALID_ARGUMENT;
}
allocator = params_st->allocator;
const size_t node_idx = (params_st->num_nodes - 1U);
if (0U == params_st->params[node_idx].num_params) {
return RCL_RET_INVALID_ARGUMENT;
}
const size_t parameter_idx = ((params_st->params[node_idx].num_params) - 1U);
const size_t val_size = event.data.scalar.length;
const char * value = (char *)event.data.scalar.value;
const uint32_t line_num = ((uint32_t)(event.start_mark.line) + 1U);
rcl_variant_t * param_value;
if (val_size > MAX_STRING_SIZE) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Scalar value at line %d"
" is bigger than %d bytes", line_num, MAX_STRING_SIZE);
return RCL_RET_ERROR;
} else {
if (0U == val_size) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "No value at line %d", line_num);
return RCL_RET_ERROR;
}
}
if (NULL == value) {
return RCL_RET_INVALID_ARGUMENT;
}
if (NULL == params_st->params[node_idx].parameter_values) {
RCL_SET_ERROR_MSG("Internal error: Invalid mem", allocator);
return RCL_RET_BAD_ALLOC;
}
param_value = &(params_st->params[node_idx].parameter_values[parameter_idx]);
// param_value->string_value = rcutils_strdup(value, allocator);
ret_val = get_value(value, &val_type, allocator);
if (NULL == ret_val) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Error parsing value %s at"
" line %d", value, line_num);
return RCL_RET_ERROR;
}
switch (val_type) {
case DATA_TYPE_UNKNOWN:
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown data type of"
" value %s at line %d\n", value, line_num);
res = RCL_RET_ERROR;
break;
case DATA_TYPE_BOOL:
if (false == is_seq) {
param_value->bool_value = (bool *)ret_val;
} else {
if (DATA_TYPE_UNKNOWN == *seq_data_type) {
*seq_data_type = val_type;
param_value->bool_array_value =
allocator.zero_allocate(1U, sizeof(rcl_bool_array_t), allocator.state);
if (NULL == param_value->bool_array_value) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
} else {
if (*seq_data_type != val_type) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same"
" type. Value type 'bool' do not belong at line_num %d", line_num);
allocator.deallocate(ret_val, allocator.state);
return RCL_RET_ERROR;
}
}
res = add_val_to_bool_arr(param_value->bool_array_value, ret_val, allocator);
if (RCL_RET_OK != res) {
if (NULL != ret_val) {
allocator.deallocate(ret_val, allocator.state);
}
return res;
}
}
break;
case DATA_TYPE_INT64:
if (false == is_seq) {
param_value->integer_value = (int64_t *)ret_val;
} else {
if (DATA_TYPE_UNKNOWN == *seq_data_type) {
*seq_data_type = val_type;
param_value->integer_array_value =
allocator.zero_allocate(1U, sizeof(rcl_int64_array_t), allocator.state);
if (NULL == param_value->integer_array_value) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
} else {
if (*seq_data_type != val_type) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same"
" type. Value type 'integer' do not belong at line_num %d", line_num);
allocator.deallocate(ret_val, allocator.state);
return RCL_RET_ERROR;
}
}
res = add_val_to_int_arr(param_value->integer_array_value, ret_val, allocator);
if (RCL_RET_OK != res) {
if (NULL != ret_val) {
allocator.deallocate(ret_val, allocator.state);
}
return res;
}
}
break;
case DATA_TYPE_DOUBLE:
if (false == is_seq) {
param_value->double_value = (double *)ret_val;
} else {
if (DATA_TYPE_UNKNOWN == *seq_data_type) {
*seq_data_type = val_type;
param_value->double_array_value =
allocator.zero_allocate(1U, sizeof(rcl_double_array_t), allocator.state);
if (NULL == param_value->double_array_value) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
} else {
if (*seq_data_type != val_type) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same"
" type. Value type 'double' do not belong at line_num %d", line_num);
allocator.deallocate(ret_val, allocator.state);
return RCL_RET_ERROR;
}
}
res = add_val_to_double_arr(param_value->double_array_value, ret_val, allocator);
if (RCL_RET_OK != res) {
if (NULL != ret_val) {
allocator.deallocate(ret_val, allocator.state);
}
return res;
}
}
break;
case DATA_TYPE_STRING:
if (false == is_seq) {
param_value->string_value = (char *)ret_val;
} else {
if (DATA_TYPE_UNKNOWN == *seq_data_type) {
*seq_data_type = val_type;
param_value->string_array_value =
allocator.zero_allocate(1U, sizeof(rcutils_string_array_t), allocator.state);
if (NULL == param_value->string_array_value) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem");
return RCL_RET_BAD_ALLOC;
}
} else {
if (*seq_data_type != val_type) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same"
" type. Value type 'string' do not belong at line_num %d", line_num);
allocator.deallocate(ret_val, allocator.state);
return RCL_RET_ERROR;
}
}
res = add_val_to_string_arr(param_value->string_array_value, ret_val, allocator);
if (RCL_RET_OK != res) {
if (NULL != ret_val) {
allocator.deallocate(ret_val, allocator.state);
}
return res;
}
}
break;
default:
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown data type of value"
" %s at line %d", value, line_num);
res = RCL_RET_ERROR;
break;
}
return res;
}
///
/// Parse the key part of the <key:value> pair
///
static rcl_ret_t parse_key(
const yaml_event_t event,
uint32_t * map_level,
bool * is_new_map,
namespace_tracker_t * ns_tracker,
rcl_params_t * params_st)
{
int32_t res = RCL_RET_OK;
const size_t val_size = event.data.scalar.length;
const char * value = (char *)event.data.scalar.value;
const uint32_t line_num = ((uint32_t)(event.start_mark.line) + 1U);
size_t num_nodes;
size_t node_idx = 0U;
rcl_allocator_t allocator;
if ((NULL == map_level) || (NULL == params_st)) {
return RCL_RET_INVALID_ARGUMENT;
}
allocator = params_st->allocator;
if (val_size > MAX_STRING_SIZE) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Scalar value at line %d"
" is bigger than %d bytes", line_num, MAX_STRING_SIZE);
return RCL_RET_ERROR;
} else {
if (0U == val_size) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "No key at line %d", line_num);
return RCL_RET_ERROR;
}
}
if (NULL == value) {
return RCL_RET_INVALID_ARGUMENT;
}
num_nodes = params_st->num_nodes; // New node index
if (num_nodes > 0U) {
node_idx = (num_nodes - 1U); // Current node index
}
switch (*map_level) {
case MAP_UNINIT_LVL:
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unintialized map level"
" at line %d", line_num);
res = RCL_RET_ERROR;
break;
case MAP_NODE_NAME_LVL:
{
/// Till we get PARAMS_KEY, keep adding to node namespace
if (0 != strncmp(PARAMS_KEY, value, strlen(PARAMS_KEY))) {
res = add_name_to_ns(ns_tracker, value, NS_TYPE_NODE, allocator);
if (RCL_RET_OK != res) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error"
" adding node namespace at line %d", line_num);
return res;
}
} else {
if (0U == ns_tracker->num_node_ns) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "There are no node names"
" before %s at line %d", PARAMS_KEY, line_num);
return RCL_RET_ERROR;
}
/// The previous key(last name in namespace) was the node name. Remove it
/// from the namespace
char * node_name_ns = rcutils_strdup(ns_tracker->node_ns, allocator);
if (NULL == node_name_ns) {
return RCL_RET_BAD_ALLOC;
}
params_st->node_names[num_nodes] = node_name_ns;
res = rem_name_from_ns(ns_tracker, NS_TYPE_NODE, allocator);
if (RCL_RET_OK != res) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error"
" adding node namespace at line %d", line_num);
return res;
}
res = node_params_init(&(params_st->params[num_nodes]), allocator);
if (RCL_RET_OK != res) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Error creating node"
" parameter at line %d", line_num);
return RCL_RET_ERROR;
}
params_st->num_nodes++;
/// Bump the map level to PARAMS
(*map_level)++;
}
}
break;
case MAP_PARAMS_LVL:
{
char * parameter_ns;
size_t parameter_idx;
char * param_name;
/// If it is a new map, the previous key is param namespace
if (true == *is_new_map) {
params_st->params[node_idx].num_params--;
parameter_idx = params_st->params[node_idx].num_params;
parameter_ns = params_st->params[node_idx].parameter_names[parameter_idx];
if (NULL == parameter_ns) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error"
" creating param namespace at line %d", line_num);
return RCL_RET_ERROR;
}
res = replace_ns(ns_tracker, parameter_ns, (ns_tracker->num_parameter_ns + 1U),
NS_TYPE_PARAM, allocator);
if (RCL_RET_OK != res) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error replacing"
" namespace at line %d", line_num);
return RCL_RET_ERROR;
}
*is_new_map = false;
}
/// Add a parameter name into the node parameters
parameter_idx = params_st->params[node_idx].num_params;
parameter_ns = ns_tracker->parameter_ns;
if (NULL == parameter_ns) {
param_name = rcutils_strdup(value, allocator);
if (NULL == param_name) {
return RCL_RET_BAD_ALLOC;
}
} else {
const size_t params_ns_len = strlen(parameter_ns);
const size_t param_name_len = strlen(value);
const size_t tot_len = (params_ns_len + param_name_len + 2U);
if (tot_len > MAX_STRING_SIZE) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "The name length"
" exceeds the MAX size %d at line %d", MAX_STRING_SIZE, line_num);
return RCL_RET_OK;
}
param_name = allocator.zero_allocate(1U, tot_len, allocator.state);
if (NULL == param_name) {
return RCL_RET_BAD_ALLOC;
}
memmove(param_name, parameter_ns, params_ns_len);
param_name[params_ns_len] = '.';
memmove((param_name + params_ns_len + 1U), value, param_name_len);
param_name[tot_len - 1U] = '\0';
}
params_st->params[node_idx].parameter_names[parameter_idx] = param_name;
params_st->params[node_idx].num_params++;
}
break;
default:
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown map level at"
" line %d", line_num);
res = RCL_RET_ERROR;
break;
}
return res;
}
///
/// Get events from the parser and process the events
///
static rcl_ret_t parse_events(
yaml_parser_t * parser,
namespace_tracker_t * ns_tracker,
rcl_params_t * params_st)
{
int32_t done_parsing = 0;
yaml_event_t event;
rcl_ret_t res = RCL_RET_OK;
bool is_key = true;
bool is_seq = false;
uint32_t line_num = 0;
data_types_t seq_data_type;
uint32_t map_level = 1U;
uint32_t map_depth = 0U;
bool is_new_map = false;
rcl_allocator_t allocator;
if ((NULL == parser) || (NULL == params_st)) {
return RCL_RET_INVALID_ARGUMENT;
}
allocator = params_st->allocator;
while (0 == done_parsing) {
if (RCL_RET_OK != res) {
return res;
}
res = yaml_parser_parse(parser, &event);
if (0 == res) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Error parsing a"
" event near line %d", line_num);
return RCL_RET_ERROR;
} else {
res = RCL_RET_OK;
}
line_num = ((uint32_t)(event.start_mark.line) + 1U);
switch (event.type) {
case YAML_STREAM_END_EVENT:
done_parsing = 1;
yaml_event_delete(&event);
break;
case YAML_SCALAR_EVENT:
{
/// Need to toggle between key and value at params level
if (true == is_key) {
res = parse_key(event, &map_level, &is_new_map, ns_tracker,
params_st);
if (RCL_RET_OK != res) {
yaml_event_delete(&event);
return res;
}
is_key = false;
} else {
/// It is a value
if (map_level < (uint32_t)(MAP_PARAMS_LVL)) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Cannot have a value"
" before %s at line %d", PARAMS_KEY, line_num);
yaml_event_delete(&event);
return RCL_RET_ERROR;
}
res = parse_value(event, is_seq, &seq_data_type, params_st);
if (RCL_RET_OK != res) {
yaml_event_delete(&event);
return res;
}
if (false == is_seq) {
is_key = true;
}
}
}
yaml_event_delete(&event);
break;
case YAML_SEQUENCE_START_EVENT:
if (true == is_key) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequences cannot be key"
" at line %d", line_num);
yaml_event_delete(&event);
return RCL_RET_ERROR;
}
if (map_level < (uint32_t)(MAP_PARAMS_LVL)) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequences can only be"
" values and not keys in params. Error at line %d\n", line_num);
yaml_event_delete(&event);
return RCL_RET_ERROR;
}
is_seq = true;
seq_data_type = DATA_TYPE_UNKNOWN;
yaml_event_delete(&event);
break;
case YAML_SEQUENCE_END_EVENT:
is_seq = false;
is_key = true;
yaml_event_delete(&event);
break;
case YAML_MAPPING_START_EVENT:
map_depth++;
is_new_map = true;
is_key = true;
/// Disable new map if it is PARAMS_KEY map
if ((MAP_PARAMS_LVL == map_level) &&
((map_depth - (ns_tracker->num_node_ns + 1U)) == 2U))
{
is_new_map = false;
}
yaml_event_delete(&event);
break;
case YAML_MAPPING_END_EVENT:
if (MAP_PARAMS_LVL == map_level) {
if (ns_tracker->num_parameter_ns > 0U) {
/// Remove param namesapce
res = rem_name_from_ns(ns_tracker, NS_TYPE_PARAM, allocator);
if (RCL_RET_OK != res) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error"
" removing parameter namespace at line %d", line_num);
yaml_event_delete(&event);
return res;
}
} else {
map_level--;
}
} else {
if ((MAP_NODE_NAME_LVL == map_level) &&
(map_depth == (ns_tracker->num_node_ns + 1U)))
{
/// Remove node namespace
res = rem_name_from_ns(ns_tracker, NS_TYPE_NODE, allocator);
if (RCL_RET_OK != res) {
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error"
" removing node namespace at line %d", line_num);
yaml_event_delete(&event);
return res;
}
}
}
map_depth--;
yaml_event_delete(&event);
break;
case YAML_ALIAS_EVENT:
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Will not support aliasing"
" at line %d\n", line_num);
res = RCL_RET_ERROR;
yaml_event_delete(&event);
break;
case YAML_STREAM_START_EVENT:
yaml_event_delete(&event);
break;
case YAML_DOCUMENT_START_EVENT:
yaml_event_delete(&event);
break;
case YAML_DOCUMENT_END_EVENT:
yaml_event_delete(&event);
break;
case YAML_NO_EVENT:
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Received an empty event at"
" line %d", line_num);
res = RCL_RET_ERROR;
yaml_event_delete(&event);
break;
default:
RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown YAML event at line"
" %d", line_num);
res = RCL_RET_ERROR;
yaml_event_delete(&event);
break;
}
}
return res;
}
///
/// TODO (anup.pemmaiah): Support string yaml similar to yaml file
/// TODO (anup.pemmaiah): Support Mutiple yaml files
///
///
/// Parse the YAML file and populate params_st
///
bool rcl_parse_yaml_file(
const char * file_path,
rcl_params_t * params_st)
{
int32_t res;
FILE * yaml_file;
yaml_parser_t parser;
namespace_tracker_t ns_tracker;
rcutils_allocator_t allocator;
if (NULL == params_st) {
RCUTILS_SAFE_FWRITE_TO_STDERR("Pass a initialized paramter structure");
return false;
}
allocator = params_st->allocator;
if (NULL == file_path) {
RCL_SET_ERROR_MSG("YAML file path is NULL", allocator);
return false;
}
res = yaml_parser_initialize(&parser);
if (0 == res) {
RCL_SET_ERROR_MSG("Could not initialize the parser", allocator);
return false;
}
yaml_file = fopen(file_path, "r");
if (NULL == yaml_file) {
yaml_parser_delete(&parser);
RCL_SET_ERROR_MSG("Error opening YAML file", allocator);
return false;
}
yaml_parser_set_input_file(&parser, yaml_file);
memset(&ns_tracker, 0, sizeof(namespace_tracker_t));
res = parse_events(&parser, &ns_tracker, params_st);
yaml_parser_delete(&parser);
fclose(yaml_file);
if (RCL_RET_OK != res) {
if (NULL != ns_tracker.node_ns) {
allocator.deallocate(ns_tracker.node_ns, allocator.state);
}
if (NULL != ns_tracker.parameter_ns) {
allocator.deallocate(ns_tracker.parameter_ns, allocator.state);
}
rcl_yaml_node_struct_fini(params_st);
return false;
}
return true;
}