// Copyright 2018 Apex.AI, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include "rcl_yaml_param_parser/parser.h" #include "rcl_yaml_param_parser/types.h" #include "rcl/error_handling.h" #include "rcl/types.h" #include "rcutils/strdup.h" /// NOTE: Will allow a max YAML mapping depth of 5 /// map level 1 : Node name mapping /// map level 2 : Params mapping typedef enum yaml_map_lvl_e { MAP_UNINIT_LVL = 0U, MAP_NODE_NAME_LVL = 1U, MAP_PARAMS_LVL = 2U, } yaml_map_lvl_t; /// Basic supported data types in the yaml file typedef enum data_types_e { DATA_TYPE_UNKNOWN = 0U, DATA_TYPE_BOOL = 1U, DATA_TYPE_INT64 = 2U, DATA_TYPE_DOUBLE = 3U, DATA_TYPE_STRING = 4U } data_types_t; typedef enum namespace_type_e { NS_TYPE_NODE = 1U, NS_TYPE_PARAM = 2U } namespace_type_t; /// Keep track of node and parameter name spaces typedef struct namespace_tracker_s { char * node_ns; uint32_t num_node_ns; char * parameter_ns; uint32_t num_parameter_ns; } namespace_tracker_t; #define MAX_STRING_SIZE 128U #define PARAMS_KEY "ros__parameters" #define NODE_NS_SEPERATOR "/" #define PARAMETER_NS_SEPERATOR "." #define MAX_NUM_NODE_ENTRIES 256U #define MAX_NUM_PARAMS_PER_NODE 512U static rcl_ret_t node_params_init( rcl_node_params_t * node_params, const rcl_allocator_t allocator); static rcl_ret_t add_val_to_bool_arr( rcl_bool_array_t * const val_array, bool * value, const rcl_allocator_t allocator); static rcl_ret_t add_val_to_int_arr( rcl_int64_array_t * const val_array, int64_t * value, const rcl_allocator_t allocator); static rcl_ret_t add_val_to_double_arr( rcl_double_array_t * const val_array, double * value, const rcl_allocator_t allocator); static rcl_ret_t add_val_to_string_arr( rcutils_string_array_t * const val_array, char * value, const rcl_allocator_t allocator); /// /// TODO (anup.pemmaiah): Support byte array /// static rcl_ret_t add_name_to_ns( namespace_tracker_t * ns_tracker, const char * name, const namespace_type_t namespace_type, rcl_allocator_t allocator); static rcl_ret_t rem_name_from_ns( namespace_tracker_t * ns_tracker, const namespace_type_t namespace_type, rcl_allocator_t allocator); static rcl_ret_t replace_ns( namespace_tracker_t * ns_tracker, char * const new_ns, const uint32_t new_ns_count, const namespace_type_t namespace_type, rcl_allocator_t allocator); static void * get_value( const char * const value, data_types_t * val_type, const rcl_allocator_t allocator); static rcl_ret_t parse_value( const yaml_event_t event, const bool is_seq, data_types_t * seq_data_type, rcl_params_t * params_st); static rcl_ret_t parse_key( const yaml_event_t event, uint32_t * map_level, bool * is_new_map, namespace_tracker_t * ns_tracker, rcl_params_t * params_st); static rcl_ret_t parse_events( yaml_parser_t * parser, namespace_tracker_t * ns_tracker, rcl_params_t * params_st); /// /// Add name to namespace tracker /// static rcl_ret_t add_name_to_ns( namespace_tracker_t * ns_tracker, const char * name, const namespace_type_t namespace_type, rcl_allocator_t allocator) { char * cur_ns; uint32_t * cur_count; char * sep_str; size_t name_len; size_t ns_len; size_t sep_len; size_t tot_len; rcl_ret_t res = RCL_RET_OK; switch (namespace_type) { case NS_TYPE_NODE: cur_ns = ns_tracker->node_ns; cur_count = &(ns_tracker->num_node_ns); sep_str = NODE_NS_SEPERATOR; break; case NS_TYPE_PARAM: cur_ns = ns_tracker->parameter_ns; cur_count = &(ns_tracker->num_parameter_ns); sep_str = PARAMETER_NS_SEPERATOR; break; default: res = RCL_RET_ERROR; break; } if (RCL_RET_OK == res) { /// Add a name to ns if (NULL == name) { return RCL_RET_INVALID_ARGUMENT; } if (0U == *cur_count) { cur_ns = rcutils_strdup(name, allocator); if (NULL == cur_ns) { return RCL_RET_BAD_ALLOC; } } else { ns_len = strlen(cur_ns); name_len = strlen(name); sep_len = strlen(sep_str); tot_len = ns_len + name_len + sep_len + 1U; if (tot_len > MAX_STRING_SIZE) { RCL_SET_ERROR_MSG("New namespace string is exceeding max string size", allocator); return RCL_RET_ERROR; } cur_ns = allocator.reallocate(cur_ns, tot_len, allocator.state); if (NULL == cur_ns) { return RCL_RET_BAD_ALLOC; } memmove((cur_ns + ns_len), sep_str, sep_len); memmove((cur_ns + ns_len + sep_len), name, name_len); cur_ns[tot_len - 1U] = '\0'; } *cur_count = (*cur_count + 1U); if (NS_TYPE_NODE == namespace_type) { ns_tracker->node_ns = cur_ns; } else { ns_tracker->parameter_ns = cur_ns; } } return res; } /// /// Remove name from namespace tracker /// static rcl_ret_t rem_name_from_ns( namespace_tracker_t * ns_tracker, const namespace_type_t namespace_type, rcl_allocator_t allocator) { char * cur_ns; uint32_t * cur_count; char * sep_str; size_t ns_len; size_t tot_len; rcl_ret_t res = RCL_RET_OK; switch (namespace_type) { case NS_TYPE_NODE: cur_ns = ns_tracker->node_ns; cur_count = &(ns_tracker->num_node_ns); sep_str = NODE_NS_SEPERATOR; break; case NS_TYPE_PARAM: cur_ns = ns_tracker->parameter_ns; cur_count = &(ns_tracker->num_parameter_ns); sep_str = PARAMETER_NS_SEPERATOR; break; default: res = RCL_RET_ERROR; break; } if (RCL_RET_OK == res) { /// Remove last name from ns if (*cur_count > 0U) { if (1U == *cur_count) { allocator.deallocate(cur_ns, allocator.state); cur_ns = NULL; } else { ns_len = strlen(cur_ns); char * last_idx = NULL; char * next_str = NULL; const char * end_ptr = (cur_ns + ns_len); next_str = strstr(cur_ns, sep_str); while (NULL != next_str) { if (next_str > end_ptr) { RCL_SET_ERROR_MSG("Internal error. Crossing arrau boundary", allocator); return RCL_RET_ERROR; } last_idx = next_str; next_str = (next_str + strlen(sep_str)); next_str = strstr(next_str, sep_str); } if (NULL != last_idx) { tot_len = ((size_t)(last_idx - cur_ns) + 1U); cur_ns = allocator.reallocate(cur_ns, tot_len, allocator.state); if (NULL == cur_ns) { return RCL_RET_BAD_ALLOC; } cur_ns[tot_len - 1U] = '\0'; } } *cur_count = (*cur_count - 1U); } if (NS_TYPE_NODE == namespace_type) { ns_tracker->node_ns = cur_ns; } else { ns_tracker->parameter_ns = cur_ns; } } return res; } /// /// Replace namespace in namespace tracker /// static rcl_ret_t replace_ns( namespace_tracker_t * ns_tracker, char * const new_ns, const uint32_t new_ns_count, const namespace_type_t namespace_type, rcl_allocator_t allocator) { rcl_ret_t res = RCL_RET_OK; /// Remove the old namespace and point to the new namespace switch (namespace_type) { case NS_TYPE_NODE: if (NULL != ns_tracker->node_ns) { allocator.deallocate(ns_tracker->node_ns, allocator.state); } ns_tracker->node_ns = new_ns; ns_tracker->num_node_ns = new_ns_count; break; case NS_TYPE_PARAM: if (NULL != ns_tracker->parameter_ns) { allocator.deallocate(ns_tracker->parameter_ns, allocator.state); } ns_tracker->parameter_ns = new_ns; ns_tracker->num_parameter_ns = new_ns_count; break; default: res = RCL_RET_ERROR; break; } return res; } /// /// Create rcl_node_params_t structure /// static rcl_ret_t node_params_init( rcl_node_params_t * node_params, const rcl_allocator_t allocator) { if (NULL == node_params) { return RCL_RET_INVALID_ARGUMENT; } node_params->parameter_names = allocator.zero_allocate(MAX_NUM_PARAMS_PER_NODE, sizeof(char *), allocator.state); if (NULL == node_params->parameter_names) { return RCL_RET_BAD_ALLOC; } node_params->parameter_values = allocator.zero_allocate(MAX_NUM_PARAMS_PER_NODE, sizeof(rcl_variant_t), allocator.state); if (NULL == node_params->parameter_values) { allocator.deallocate(node_params->parameter_names, allocator.state); return RCL_RET_BAD_ALLOC; } return RCL_RET_OK; } /// /// Create the rcl_params_t parameter structure /// rcl_params_t * rcl_yaml_node_struct_init( const rcl_allocator_t allocator) { rcl_params_t * params_st; params_st = allocator.zero_allocate(1, sizeof(rcl_params_t), allocator.state); if (NULL == params_st) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return NULL; } params_st->node_names = allocator.zero_allocate(MAX_NUM_NODE_ENTRIES, sizeof(char *), allocator.state); if (NULL == params_st->node_names) { rcl_yaml_node_struct_fini(params_st); RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return NULL; } params_st->params = allocator.zero_allocate(MAX_NUM_NODE_ENTRIES, sizeof(rcl_node_params_t), allocator.state); if (NULL == params_st->params) { rcl_yaml_node_struct_fini(params_st); RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return NULL; } params_st->num_nodes = 0U; params_st->allocator = allocator; return params_st; } /// /// Free param structure /// NOTE: If there is an error, would recommend just to safely exit the process instead /// of calling this free function and continuing /// void rcl_yaml_node_struct_fini( rcl_params_t * params_st) { uint32_t node_idx; size_t parameter_idx = 0U; rcl_allocator_t allocator; if (NULL == params_st) { return; } allocator = params_st->allocator; for (node_idx = 0; node_idx < params_st->num_nodes; node_idx++) { char * node_name = params_st->node_names[node_idx]; if (NULL != node_name) { allocator.deallocate(node_name, allocator.state); } if (NULL != params_st->params) { char * param_name; rcl_variant_t * param_var; for (parameter_idx = 0; parameter_idx < params_st->params[node_idx].num_params; parameter_idx++) { if ((NULL != params_st->params[node_idx].parameter_names) && (NULL != params_st->params[node_idx].parameter_values)) { param_name = params_st->params[node_idx].parameter_names[parameter_idx]; param_var = &(params_st->params[node_idx].parameter_values[parameter_idx]); if (NULL != param_name) { allocator.deallocate(param_name, allocator.state); } if (NULL != param_var) { if (NULL != param_var->bool_value) { allocator.deallocate(param_var->bool_value, allocator.state); } else if (NULL != param_var->integer_value) { allocator.deallocate(param_var->integer_value, allocator.state); } else if (NULL != param_var->double_value) { allocator.deallocate(param_var->double_value, allocator.state); } else if (NULL != param_var->string_value) { allocator.deallocate(param_var->string_value, allocator.state); } else if (NULL != param_var->bool_array_value) { if (NULL != param_var->bool_array_value->values) { allocator.deallocate(param_var->bool_array_value->values, allocator.state); } allocator.deallocate(param_var->bool_array_value, allocator.state); } else if (NULL != param_var->integer_array_value) { if (NULL != param_var->integer_array_value->values) { allocator.deallocate(param_var->integer_array_value->values, allocator.state); } allocator.deallocate(param_var->integer_array_value, allocator.state); } else if (NULL != param_var->double_array_value) { if (NULL != param_var->double_array_value->values) { allocator.deallocate(param_var->double_array_value->values, allocator.state); } allocator.deallocate(param_var->double_array_value, allocator.state); } else if (NULL != param_var->string_array_value) { if (RCL_RET_OK != rcutils_string_array_fini(param_var->string_array_value)) { // Log and continue ... RCUTILS_SAFE_FWRITE_TO_STDERR("Error deallocating string array"); } allocator.deallocate(param_var->string_array_value, allocator.state); } else { /// Nothing to do to keep pclint happy } } // if (param_var) } } // for (parameter_idx) if (NULL != params_st->params[node_idx].parameter_values) { allocator.deallocate(params_st->params[node_idx].parameter_values, allocator.state); } if (NULL != params_st->params[node_idx].parameter_names) { allocator.deallocate(params_st->params[node_idx].parameter_names, allocator.state); } } // if (params) } // for (node_idx) if (NULL != params_st->node_names) { allocator.deallocate(params_st->node_names, allocator.state); params_st->node_names = NULL; } if (NULL != params_st->params) { allocator.deallocate(params_st->params, allocator.state); params_st->params = NULL; } params_st->num_nodes = 0U; allocator.deallocate(params_st, allocator.state); } /// /// Dump the param structure /// void rcl_yaml_node_struct_print( const rcl_params_t * const params_st) { size_t node_idx; size_t parameter_idx = 0U; if (NULL == params_st) { return; } printf("\n Node Name\t\t\t\tParameters\n"); for (node_idx = 0; node_idx < params_st->num_nodes; node_idx++) { int32_t param_col = 50; const char * const node_name = params_st->node_names[node_idx]; if (NULL != node_name) { printf("%s\n", node_name); } if (NULL != params_st->params) { char * param_name; rcl_variant_t * param_var; for (parameter_idx = 0; parameter_idx < params_st->params[node_idx].num_params; parameter_idx++) { if ((NULL != params_st->params[node_idx].parameter_names) && (NULL != params_st->params[node_idx].parameter_values)) { param_name = params_st->params[node_idx].parameter_names[parameter_idx]; param_var = &(params_st->params[node_idx].parameter_values[parameter_idx]); if (NULL != param_name) { printf("%*s", param_col, param_name); } if (NULL != param_var) { if (NULL != param_var->bool_value) { printf(": %s\n", *(param_var->bool_value) ? "true" : "false"); } else if (NULL != param_var->integer_value) { printf(": %" PRId64 "\n", *(param_var->integer_value)); } else if (NULL != param_var->double_value) { printf(": %lf\n", *(param_var->double_value)); } else if (NULL != param_var->string_value) { printf(": %s\n", param_var->string_value); } else if (NULL != param_var->bool_array_value) { printf(": "); for (size_t i = 0; i < param_var->bool_array_value->size; i++) { if (param_var->bool_array_value->values) { printf("%s, ", (param_var->bool_array_value->values[i]) ? "true" : "false"); } } printf("\n"); } else if (NULL != param_var->integer_array_value) { printf(": "); for (size_t i = 0; i < param_var->integer_array_value->size; i++) { if (param_var->integer_array_value->values) { printf("%" PRId64 ", ", param_var->integer_array_value->values[i]); } } printf("\n"); } else if (NULL != param_var->double_array_value) { printf(": "); for (size_t i = 0; i < param_var->double_array_value->size; i++) { if (param_var->double_array_value->values) { printf("%lf, ", param_var->double_array_value->values[i]); } } printf("\n"); } else if (NULL != param_var->string_array_value) { printf(": "); for (size_t i = 0; i < param_var->string_array_value->size; i++) { if (param_var->string_array_value->data[i]) { printf("%s, ", param_var->string_array_value->data[i]); } } printf("\n"); } } } } } } } /// /// Add a value to a bool array. Create the array if it does not exist /// static rcl_ret_t add_val_to_bool_arr( rcl_bool_array_t * const val_array, bool * value, const rcl_allocator_t allocator) { if ((NULL == value) || (NULL == val_array)) { return RCL_RET_INVALID_ARGUMENT; } if (NULL == val_array->values) { val_array->values = value; val_array->size++; } else { /// Increase the array size by one and add the new value bool * tmp_arr = val_array->values; val_array->values = allocator.zero_allocate(val_array->size + 1U, sizeof(bool), allocator.state); if (NULL == val_array->values) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } memmove(val_array->values, tmp_arr, (val_array->size * sizeof(bool))); val_array->values[val_array->size] = *value; val_array->size++; allocator.deallocate(value, allocator.state); allocator.deallocate(tmp_arr, allocator.state); } return RCL_RET_OK; } /// /// Add a value to an integer array. Create the array if it does not exist /// static rcl_ret_t add_val_to_int_arr( rcl_int64_array_t * const val_array, int64_t * value, const rcl_allocator_t allocator) { if ((NULL == value) || (NULL == val_array)) { return RCL_RET_INVALID_ARGUMENT; } if (NULL == val_array->values) { val_array->values = value; val_array->size++; } else { /// Increase the array size by one and add the new value int64_t * tmp_arr = val_array->values; val_array->values = allocator.zero_allocate(val_array->size + 1U, sizeof(int64_t), allocator.state); if (NULL == val_array->values) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } memmove(val_array->values, tmp_arr, (val_array->size * sizeof(int64_t))); val_array->values[val_array->size] = *value; val_array->size++; allocator.deallocate(value, allocator.state); allocator.deallocate(tmp_arr, allocator.state); } return RCL_RET_OK; } /// /// Add a value to a double array. Create the array if it does not exist /// static rcl_ret_t add_val_to_double_arr( rcl_double_array_t * const val_array, double * value, const rcl_allocator_t allocator) { if ((NULL == value) || (NULL == val_array)) { return RCL_RET_INVALID_ARGUMENT; } if (NULL == val_array->values) { val_array->values = value; val_array->size++; } else { /// Increase the array size by one and add the new value double * tmp_arr = val_array->values; val_array->values = allocator.zero_allocate(val_array->size + 1U, sizeof(double), allocator.state); if (NULL == val_array->values) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } memmove(val_array->values, tmp_arr, (val_array->size * sizeof(double))); val_array->values[val_array->size] = *value; val_array->size++; allocator.deallocate(value, allocator.state); allocator.deallocate(tmp_arr, allocator.state); } return RCL_RET_OK; } /// /// Add a value to a string array. Create the array if it does not exist /// static rcl_ret_t add_val_to_string_arr( rcutils_string_array_t * const val_array, char * value, const rcl_allocator_t allocator) { if ((NULL == value) || (NULL == val_array)) { return RCL_RET_INVALID_ARGUMENT; } if (NULL == val_array->data) { rcl_ret_t res; res = rcutils_string_array_init(val_array, 1, &allocator); if (RCL_RET_OK != res) { return res; } val_array->data[0U] = value; } else { /// Increase the array size by one and add the new value val_array->data = allocator.reallocate(val_array->data, ((val_array->size + 1U) * sizeof(char *)), allocator.state); if (NULL == val_array->data) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } val_array->data[val_array->size] = value; val_array->size++; } return RCL_RET_OK; } /// /// Determine the type of the value and return the converted value /// NOTE: Only canonical forms supported as of now /// static void * get_value( const char * const value, data_types_t * val_type, const rcl_allocator_t allocator) { void * ret_val; int64_t ival; double dval; char * endptr = NULL; if ((NULL == value) || (NULL == val_type)) { RCL_SET_ERROR_MSG("Invalid arguments", allocator); return NULL; } /// Check if it is bool if ((0 == strncmp(value, "Y", strlen(value))) || (0 == strncmp(value, "y", strlen(value))) || (0 == strncmp(value, "yes", strlen(value))) || (0 == strncmp(value, "Yes", strlen(value))) || (0 == strncmp(value, "YES", strlen(value))) || (0 == strncmp(value, "true", strlen(value))) || (0 == strncmp(value, "True", strlen(value))) || (0 == strncmp(value, "TRUE", strlen(value))) || (0 == strncmp(value, "on", strlen(value))) || (0 == strncmp(value, "On", strlen(value))) || (0 == strncmp(value, "ON", strlen(value)))) { *val_type = DATA_TYPE_BOOL; ret_val = allocator.zero_allocate(1U, sizeof(bool), allocator.state); if (NULL == ret_val) { return NULL; } *((bool *)ret_val) = true; return ret_val; } if ((0 == strncmp(value, "N", strlen(value))) || (0 == strncmp(value, "n", strlen(value))) || (0 == strncmp(value, "no", strlen(value))) || (0 == strncmp(value, "No", strlen(value))) || (0 == strncmp(value, "NO", strlen(value))) || (0 == strncmp(value, "false", strlen(value))) || (0 == strncmp(value, "False", strlen(value))) || (0 == strncmp(value, "FALSE", strlen(value))) || (0 == strncmp(value, "off", strlen(value))) || (0 == strncmp(value, "Off", strlen(value))) || (0 == strncmp(value, "OFF", strlen(value)))) { *val_type = DATA_TYPE_BOOL; ret_val = allocator.zero_allocate(1U, sizeof(bool), allocator.state); if (NULL == ret_val) { return NULL; } *((bool *)ret_val) = false; return ret_val; } /// Check for int errno = 0; ival = strtol(value, &endptr, 0); if ((0 == errno) && (NULL != endptr)) { if ((NULL != endptr) && (endptr != value)) { if (('\0' != *value) && ('\0' == *endptr)) { *val_type = DATA_TYPE_INT64; ret_val = allocator.zero_allocate(1U, sizeof(int64_t), allocator.state); if (NULL == ret_val) { return NULL; } *((int64_t *)ret_val) = ival; return ret_val; } } } /// Check for float errno = 0; endptr = NULL; dval = strtod(value, &endptr); if ((0 == errno) && (NULL != endptr)) { if ((NULL != endptr) && (endptr != value)) { if (('\0' != *value) && ('\0' == *endptr)) { *val_type = DATA_TYPE_DOUBLE; ret_val = allocator.zero_allocate(1U, sizeof(double), allocator.state); if (NULL == ret_val) { return NULL; } *((double *)ret_val) = dval; return ret_val; } } } errno = 0; /// It is a string *val_type = DATA_TYPE_STRING; ret_val = rcutils_strdup(value, allocator); return ret_val; } /// /// Parse the value part of the pair /// static rcl_ret_t parse_value( const yaml_event_t event, const bool is_seq, data_types_t * seq_data_type, rcl_params_t * params_st) { void * ret_val; data_types_t val_type; int res = RCL_RET_OK; rcl_allocator_t allocator; if ((NULL == params_st) || (0U == params_st->num_nodes) || (NULL == seq_data_type)) { return RCL_RET_INVALID_ARGUMENT; } allocator = params_st->allocator; const size_t node_idx = (params_st->num_nodes - 1U); if (0U == params_st->params[node_idx].num_params) { return RCL_RET_INVALID_ARGUMENT; } const size_t parameter_idx = ((params_st->params[node_idx].num_params) - 1U); const size_t val_size = event.data.scalar.length; const char * value = (char *)event.data.scalar.value; const uint32_t line_num = ((uint32_t)(event.start_mark.line) + 1U); rcl_variant_t * param_value; if (val_size > MAX_STRING_SIZE) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Scalar value at line %d" " is bigger than %d bytes", line_num, MAX_STRING_SIZE); return RCL_RET_ERROR; } else { if (0U == val_size) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "No value at line %d", line_num); return RCL_RET_ERROR; } } if (NULL == value) { return RCL_RET_INVALID_ARGUMENT; } if (NULL == params_st->params[node_idx].parameter_values) { RCL_SET_ERROR_MSG("Internal error: Invalid mem", allocator); return RCL_RET_BAD_ALLOC; } param_value = &(params_st->params[node_idx].parameter_values[parameter_idx]); // param_value->string_value = rcutils_strdup(value, allocator); ret_val = get_value(value, &val_type, allocator); if (NULL == ret_val) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Error parsing value %s at" " line %d", value, line_num); return RCL_RET_ERROR; } switch (val_type) { case DATA_TYPE_UNKNOWN: RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown data type of" " value %s at line %d\n", value, line_num); res = RCL_RET_ERROR; break; case DATA_TYPE_BOOL: if (false == is_seq) { param_value->bool_value = (bool *)ret_val; } else { if (DATA_TYPE_UNKNOWN == *seq_data_type) { *seq_data_type = val_type; param_value->bool_array_value = allocator.zero_allocate(1U, sizeof(rcl_bool_array_t), allocator.state); if (NULL == param_value->bool_array_value) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } } else { if (*seq_data_type != val_type) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same" " type. Value type 'bool' do not belong at line_num %d", line_num); allocator.deallocate(ret_val, allocator.state); return RCL_RET_ERROR; } } res = add_val_to_bool_arr(param_value->bool_array_value, ret_val, allocator); if (RCL_RET_OK != res) { if (NULL != ret_val) { allocator.deallocate(ret_val, allocator.state); } return res; } } break; case DATA_TYPE_INT64: if (false == is_seq) { param_value->integer_value = (int64_t *)ret_val; } else { if (DATA_TYPE_UNKNOWN == *seq_data_type) { *seq_data_type = val_type; param_value->integer_array_value = allocator.zero_allocate(1U, sizeof(rcl_int64_array_t), allocator.state); if (NULL == param_value->integer_array_value) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } } else { if (*seq_data_type != val_type) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same" " type. Value type 'integer' do not belong at line_num %d", line_num); allocator.deallocate(ret_val, allocator.state); return RCL_RET_ERROR; } } res = add_val_to_int_arr(param_value->integer_array_value, ret_val, allocator); if (RCL_RET_OK != res) { if (NULL != ret_val) { allocator.deallocate(ret_val, allocator.state); } return res; } } break; case DATA_TYPE_DOUBLE: if (false == is_seq) { param_value->double_value = (double *)ret_val; } else { if (DATA_TYPE_UNKNOWN == *seq_data_type) { *seq_data_type = val_type; param_value->double_array_value = allocator.zero_allocate(1U, sizeof(rcl_double_array_t), allocator.state); if (NULL == param_value->double_array_value) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } } else { if (*seq_data_type != val_type) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same" " type. Value type 'double' do not belong at line_num %d", line_num); allocator.deallocate(ret_val, allocator.state); return RCL_RET_ERROR; } } res = add_val_to_double_arr(param_value->double_array_value, ret_val, allocator); if (RCL_RET_OK != res) { if (NULL != ret_val) { allocator.deallocate(ret_val, allocator.state); } return res; } } break; case DATA_TYPE_STRING: if (false == is_seq) { param_value->string_value = (char *)ret_val; } else { if (DATA_TYPE_UNKNOWN == *seq_data_type) { *seq_data_type = val_type; param_value->string_array_value = allocator.zero_allocate(1U, sizeof(rcutils_string_array_t), allocator.state); if (NULL == param_value->string_array_value) { RCUTILS_SAFE_FWRITE_TO_STDERR("Error allocating mem"); return RCL_RET_BAD_ALLOC; } } else { if (*seq_data_type != val_type) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequence should be of same" " type. Value type 'string' do not belong at line_num %d", line_num); allocator.deallocate(ret_val, allocator.state); return RCL_RET_ERROR; } } res = add_val_to_string_arr(param_value->string_array_value, ret_val, allocator); if (RCL_RET_OK != res) { if (NULL != ret_val) { allocator.deallocate(ret_val, allocator.state); } return res; } } break; default: RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown data type of value" " %s at line %d", value, line_num); res = RCL_RET_ERROR; break; } return res; } /// /// Parse the key part of the pair /// static rcl_ret_t parse_key( const yaml_event_t event, uint32_t * map_level, bool * is_new_map, namespace_tracker_t * ns_tracker, rcl_params_t * params_st) { int32_t res = RCL_RET_OK; const size_t val_size = event.data.scalar.length; const char * value = (char *)event.data.scalar.value; const uint32_t line_num = ((uint32_t)(event.start_mark.line) + 1U); size_t num_nodes; size_t node_idx = 0U; rcl_allocator_t allocator; if ((NULL == map_level) || (NULL == params_st)) { return RCL_RET_INVALID_ARGUMENT; } allocator = params_st->allocator; if (val_size > MAX_STRING_SIZE) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Scalar value at line %d" " is bigger than %d bytes", line_num, MAX_STRING_SIZE); return RCL_RET_ERROR; } else { if (0U == val_size) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "No key at line %d", line_num); return RCL_RET_ERROR; } } if (NULL == value) { return RCL_RET_INVALID_ARGUMENT; } num_nodes = params_st->num_nodes; // New node index if (num_nodes > 0U) { node_idx = (num_nodes - 1U); // Current node index } switch (*map_level) { case MAP_UNINIT_LVL: RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unintialized map level" " at line %d", line_num); res = RCL_RET_ERROR; break; case MAP_NODE_NAME_LVL: { /// Till we get PARAMS_KEY, keep adding to node namespace if (0 != strncmp(PARAMS_KEY, value, strlen(PARAMS_KEY))) { res = add_name_to_ns(ns_tracker, value, NS_TYPE_NODE, allocator); if (RCL_RET_OK != res) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error" " adding node namespace at line %d", line_num); return res; } } else { if (0U == ns_tracker->num_node_ns) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "There are no node names" " before %s at line %d", PARAMS_KEY, line_num); return RCL_RET_ERROR; } /// The previous key(last name in namespace) was the node name. Remove it /// from the namespace char * node_name_ns = rcutils_strdup(ns_tracker->node_ns, allocator); if (NULL == node_name_ns) { return RCL_RET_BAD_ALLOC; } params_st->node_names[num_nodes] = node_name_ns; res = rem_name_from_ns(ns_tracker, NS_TYPE_NODE, allocator); if (RCL_RET_OK != res) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error" " adding node namespace at line %d", line_num); return res; } res = node_params_init(&(params_st->params[num_nodes]), allocator); if (RCL_RET_OK != res) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Error creating node" " parameter at line %d", line_num); return RCL_RET_ERROR; } params_st->num_nodes++; /// Bump the map level to PARAMS (*map_level)++; } } break; case MAP_PARAMS_LVL: { char * parameter_ns; size_t parameter_idx; char * param_name; /// If it is a new map, the previous key is param namespace if (true == *is_new_map) { params_st->params[node_idx].num_params--; parameter_idx = params_st->params[node_idx].num_params; parameter_ns = params_st->params[node_idx].parameter_names[parameter_idx]; if (NULL == parameter_ns) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error" " creating param namespace at line %d", line_num); return RCL_RET_ERROR; } res = replace_ns(ns_tracker, parameter_ns, (ns_tracker->num_parameter_ns + 1U), NS_TYPE_PARAM, allocator); if (RCL_RET_OK != res) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error replacing" " namespace at line %d", line_num); return RCL_RET_ERROR; } *is_new_map = false; } /// Add a parameter name into the node parameters parameter_idx = params_st->params[node_idx].num_params; parameter_ns = ns_tracker->parameter_ns; if (NULL == parameter_ns) { param_name = rcutils_strdup(value, allocator); if (NULL == param_name) { return RCL_RET_BAD_ALLOC; } } else { const size_t params_ns_len = strlen(parameter_ns); const size_t param_name_len = strlen(value); const size_t tot_len = (params_ns_len + param_name_len + 2U); if (tot_len > MAX_STRING_SIZE) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "The name length" " exceeds the MAX size %d at line %d", MAX_STRING_SIZE, line_num); return RCL_RET_OK; } param_name = allocator.zero_allocate(1U, tot_len, allocator.state); if (NULL == param_name) { return RCL_RET_BAD_ALLOC; } memmove(param_name, parameter_ns, params_ns_len); param_name[params_ns_len] = '.'; memmove((param_name + params_ns_len + 1U), value, param_name_len); param_name[tot_len - 1U] = '\0'; } params_st->params[node_idx].parameter_names[parameter_idx] = param_name; params_st->params[node_idx].num_params++; } break; default: RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown map level at" " line %d", line_num); res = RCL_RET_ERROR; break; } return res; } /// /// Get events from the parser and process the events /// static rcl_ret_t parse_events( yaml_parser_t * parser, namespace_tracker_t * ns_tracker, rcl_params_t * params_st) { int32_t done_parsing = 0; yaml_event_t event; rcl_ret_t res = RCL_RET_OK; bool is_key = true; bool is_seq = false; uint32_t line_num = 0; data_types_t seq_data_type; uint32_t map_level = 1U; uint32_t map_depth = 0U; bool is_new_map = false; rcl_allocator_t allocator; if ((NULL == parser) || (NULL == params_st)) { return RCL_RET_INVALID_ARGUMENT; } allocator = params_st->allocator; while (0 == done_parsing) { if (RCL_RET_OK != res) { return res; } res = yaml_parser_parse(parser, &event); if (0 == res) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Error parsing a" " event near line %d", line_num); return RCL_RET_ERROR; } else { res = RCL_RET_OK; } line_num = ((uint32_t)(event.start_mark.line) + 1U); switch (event.type) { case YAML_STREAM_END_EVENT: done_parsing = 1; yaml_event_delete(&event); break; case YAML_SCALAR_EVENT: { /// Need to toggle between key and value at params level if (true == is_key) { res = parse_key(event, &map_level, &is_new_map, ns_tracker, params_st); if (RCL_RET_OK != res) { yaml_event_delete(&event); return res; } is_key = false; } else { /// It is a value if (map_level < (uint32_t)(MAP_PARAMS_LVL)) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Cannot have a value" " before %s at line %d", PARAMS_KEY, line_num); yaml_event_delete(&event); return RCL_RET_ERROR; } res = parse_value(event, is_seq, &seq_data_type, params_st); if (RCL_RET_OK != res) { yaml_event_delete(&event); return res; } if (false == is_seq) { is_key = true; } } } yaml_event_delete(&event); break; case YAML_SEQUENCE_START_EVENT: if (true == is_key) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequences cannot be key" " at line %d", line_num); yaml_event_delete(&event); return RCL_RET_ERROR; } if (map_level < (uint32_t)(MAP_PARAMS_LVL)) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Sequences can only be" " values and not keys in params. Error at line %d\n", line_num); yaml_event_delete(&event); return RCL_RET_ERROR; } is_seq = true; seq_data_type = DATA_TYPE_UNKNOWN; yaml_event_delete(&event); break; case YAML_SEQUENCE_END_EVENT: is_seq = false; is_key = true; yaml_event_delete(&event); break; case YAML_MAPPING_START_EVENT: map_depth++; is_new_map = true; is_key = true; /// Disable new map if it is PARAMS_KEY map if ((MAP_PARAMS_LVL == map_level) && ((map_depth - (ns_tracker->num_node_ns + 1U)) == 2U)) { is_new_map = false; } yaml_event_delete(&event); break; case YAML_MAPPING_END_EVENT: if (MAP_PARAMS_LVL == map_level) { if (ns_tracker->num_parameter_ns > 0U) { /// Remove param namesapce res = rem_name_from_ns(ns_tracker, NS_TYPE_PARAM, allocator); if (RCL_RET_OK != res) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error" " removing parameter namespace at line %d", line_num); yaml_event_delete(&event); return res; } } else { map_level--; } } else { if ((MAP_NODE_NAME_LVL == map_level) && (map_depth == (ns_tracker->num_node_ns + 1U))) { /// Remove node namespace res = rem_name_from_ns(ns_tracker, NS_TYPE_NODE, allocator); if (RCL_RET_OK != res) { RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Internal error" " removing node namespace at line %d", line_num); yaml_event_delete(&event); return res; } } } map_depth--; yaml_event_delete(&event); break; case YAML_ALIAS_EVENT: RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Will not support aliasing" " at line %d\n", line_num); res = RCL_RET_ERROR; yaml_event_delete(&event); break; case YAML_STREAM_START_EVENT: yaml_event_delete(&event); break; case YAML_DOCUMENT_START_EVENT: yaml_event_delete(&event); break; case YAML_DOCUMENT_END_EVENT: yaml_event_delete(&event); break; case YAML_NO_EVENT: RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Received an empty event at" " line %d", line_num); res = RCL_RET_ERROR; yaml_event_delete(&event); break; default: RCL_SET_ERROR_MSG_WITH_FORMAT_STRING(allocator, "Unknown YAML event at line" " %d", line_num); res = RCL_RET_ERROR; yaml_event_delete(&event); break; } } return res; } /// /// TODO (anup.pemmaiah): Support string yaml similar to yaml file /// TODO (anup.pemmaiah): Support Mutiple yaml files /// /// /// Parse the YAML file and populate params_st /// bool rcl_parse_yaml_file( const char * file_path, rcl_params_t * params_st) { int32_t res; FILE * yaml_file; yaml_parser_t parser; namespace_tracker_t ns_tracker; rcutils_allocator_t allocator; if (NULL == params_st) { RCUTILS_SAFE_FWRITE_TO_STDERR("Pass a initialized paramter structure"); return false; } allocator = params_st->allocator; if (NULL == file_path) { RCL_SET_ERROR_MSG("YAML file path is NULL", allocator); return false; } res = yaml_parser_initialize(&parser); if (0 == res) { RCL_SET_ERROR_MSG("Could not initialize the parser", allocator); return false; } yaml_file = fopen(file_path, "r"); if (NULL == yaml_file) { yaml_parser_delete(&parser); RCL_SET_ERROR_MSG("Error opening YAML file", allocator); return false; } yaml_parser_set_input_file(&parser, yaml_file); memset(&ns_tracker, 0, sizeof(namespace_tracker_t)); res = parse_events(&parser, &ns_tracker, params_st); yaml_parser_delete(&parser); fclose(yaml_file); if (RCL_RET_OK != res) { if (NULL != ns_tracker.node_ns) { allocator.deallocate(ns_tracker.node_ns, allocator.state); } if (NULL != ns_tracker.parameter_ns) { allocator.deallocate(ns_tracker.parameter_ns, allocator.state); } rcl_yaml_node_struct_fini(params_st); return false; } return true; }