tracetools_analysis/tracetools_analysis/analysis/testing.ipynb
2025-05-17 14:23:52 +02:00

469 lines
37 KiB
Text
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# # Building\n",
"# colcon build\n",
"# # later also just:\n",
"# colcon build --packages-select full_topology\n",
"# \n",
"# # Running\n",
"# source install/setup.bash\n",
"# ros2 launch full_topology trace_full_topology.launch.py\n",
"# ros2 trace-analysis convert ./analysis/tracing/full_topology_tracing\n",
"# ros2 trace-analysis process ./analysis/tracing/full_topology_tracing\n",
"#\n",
"# ## On the host machine for lttng:\n",
"# ### Getting the modules\n",
"# sudo su -\n",
"# cd /var/lib/dkms/lttng-modules/2.13.0.rc1.516.g41ea7c4b/build\n",
"# make clean\n",
"# make\n",
"# make modules_install\n",
"# exit\n",
"# sudo depmod -a\n",
"# sudo modprobe lttng-tracer\n",
"# sudo modprobe lttng-ring-buffer-client-discard\n",
"# sudo modprobe lttng-ring-buffer-client-overwrite\n",
"# sudo modprobe lttng-ring-buffer-metadata-client\n",
"# sudo systemctl restart lttng-sessiond.service\n",
"# \n",
"# # we need \"libxml2.so.2\"\n",
"# sudo ln -s /usr/lib/libxml2.so /usr/lib/libxml2.so.2\n",
"# ### Verify the modules\n",
"# lsmod | grep lttng\n",
"# \n",
"# sudo systemctl status lttng-sessiond.service\n",
"# \n",
"# lttng create test-session\n",
"# lttng enable-event -k sched_switch\n",
"# lttng start\n",
"# sleep 1\n",
"# lttng stop\n",
"# lttng destroy"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"#path = '~/.ros/tracing/pingpong/ust'\n",
"path = '/workspaces/ROS-Dynamic-Executor-Experiments/analysis/tracing/full_topology_tracing-20250516134156/ust/converted'"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" [100%] [Ros2Handler]\n",
"Index(['callback_object', 'timestamp', 'duration', 'intra_process'], dtype='object')\n"
]
}
],
"source": [
"import sys\n",
"# Assuming a workspace with:\n",
"# <...>/tracetools_analysis/\n",
"# <...>/ros2_tracing/tracetools_read/\n",
"sys.path.insert(0, '../')\n",
"sys.path.insert(0, '../../../ros2_tracing/tracetools_read/')\n",
"\n",
"from tracetools_analysis.loading import load_file\n",
"from tracetools_analysis.processor.ros2 import Ros2Handler\n",
"events = load_file(path)\n",
"handler = Ros2Handler.process(events)\n",
"names = {ev['_name'] for ev in events}\n",
"#print(names)\n",
"assert 'ros2:rclcpp_publish' in names\n",
"assert 'ros2:callback_start' in names\n",
"print(handler.data.callback_instances.columns)\n",
"# → … 'message_id' … now present\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"# Assuming a workspace with:\n",
"# <...>/tracetools_analysis/\n",
"# <...>/ros2_tracing/tracetools_read/\n",
"sys.path.insert(0, '../')\n",
"sys.path.insert(0, '../../../ros2_tracing/tracetools_read/')\n",
"import datetime as dt\n",
"\n",
"from bokeh.plotting import figure\n",
"from bokeh.plotting import output_notebook\n",
"from bokeh.io import show\n",
"from bokeh.layouts import row\n",
"from bokeh.models import ColumnDataSource\n",
"from bokeh.models import DatetimeTickFormatter\n",
"from bokeh.models import PrintfTickFormatter\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"from tracetools_analysis.loading import load_file\n",
"from tracetools_analysis.processor.ros2 import Ros2Handler\n",
"from tracetools_analysis.utils.ros2 import Ros2DataModelUtil"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" [100%] [Ros2Handler]\n"
]
}
],
"source": [
"# Process\n",
"events = load_file(path)\n",
"handler = Ros2Handler.process(events)\n",
"#handler.data.print_data()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>\n",
" .bk-notebook-logo {\n",
" display: block;\n",
" width: 20px;\n",
" height: 20px;\n",
" background-image: url();\n",
" }\n",
" </style>\n",
" <div>\n",
" <a href=\"https://bokeh.org\" target=\"_blank\" class=\"bk-notebook-logo\"></a>\n",
" <span id=\"e69a3b91-32bd-4eb3-a5af-3b8844dac007\">Loading BokehJS ...</span>\n",
" </div>\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n // Clean up Bokeh references\n if (id != null && id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim();\n if (id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"<div style='background-color: #fdd'>\\n\"+\n \"<p>\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"</p>\\n\"+\n \"<ul>\\n\"+\n \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n \"<li>use INLINE resources instead, as so:</li>\\n\"+\n \"</ul>\\n\"+\n \"<code>\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"</code>\\n\"+\n \"</div>\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"e69a3b91-32bd-4eb3-a5af-3b8844dac007\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-3.1.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-3.1.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-3.1.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-3.1.1.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-3.1.1.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"e69a3b91-32bd-4eb3-a5af-3b8844dac007\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));",
"application/vnd.bokehjs_load.v0+json": ""
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data_util = Ros2DataModelUtil(handler.data)\n",
"\n",
"callback_symbols = data_util.get_callback_symbols()\n",
"\n",
"output_notebook()\n",
"psize = 450\n",
"colours = [\n",
" '#29788E', '#DD4968', '#410967', '#44BFC8', '#F76F8E',\n",
" '#8B1E3F', '#81C784', '#FFB74D', '#9575CD', '#F06292',\n",
" '#4DB6AC', '#BA68C8', '#7986CB', '#AED581', '#FF8A65',\n",
" '#E57373', '#64B5F6', '#4FC3F7', '#81D4FA', '#4DD0E1',\n",
" '#26A69A', '#66BB6A', '#D4E157', '#FFEE58', '#FFCA28',\n",
" '#FFA726', '#FF7043', '#8D6E63', '#BDBDBD', '#78909C',\n",
" '#90CAF9', '#A5D6A7', '#FFF59D', '#FFD54F', '#FFCC80',\n",
" '#FFAB91', '#CE93D8', '#F48FB1', '#B39DDB', '#80DEEA',\n",
" '#A1887F', '#E0E0E0', '#E6EE9C', '#C5E1A5', '#FFCDD2',\n",
" '#F0F4C3', '#B0BEC5', '#B2EBF2', '#DCEDC8', '#F5F5F5'\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Callback object → symbol → owner info\n",
"\n",
"110492369590912 → Subscription -- node: sensor_fusion_node, tid: 210285, topic: /imu/data\n",
"110492377049488 → Subscription -- node: telemetry_node, tid: 210285, topic: /camera/mapped\n",
"110492374014864 → Subscription -- node: flight_mgmt_node, tid: 210285, topic: /operator/commands\n",
"110492361275680 → Subscription -- node: radiometric_node, tid: 210285, topic: /camera/debayered\n",
"110492363270560 → Subscription -- node: mapping_node, tid: 210285, topic: /camera/geometric\n",
"110492369806368 → Subscription -- node: sensor_fusion_node, tid: 210285, topic: /gps/fix\n",
"110492378550192 → Subscription -- node: radio_tx_node, tid: 210285, topic: /telemetry/data\n",
"110492364459312 → Subscription -- node: smoke_classifier_node, tid: 210285, topic: /camera/radiometric\n",
"110492375534528 → Subscription -- node: flight_control_node, tid: 210285, topic: /flight/plan\n",
"110492362358864 → Subscription -- node: geometric_node, tid: 210285, topic: /camera/radiometric\n",
"110492369808864 → Subscription -- node: sensor_fusion_node, tid: 210285, topic: /baro/alt\n",
"110492377005024 → Subscription -- node: telemetry_node, tid: 210285, topic: /sensors/fused\n",
"110492374009056 → Subscription -- node: flight_mgmt_node, tid: 210285, topic: /sensors/fused\n",
"110492360066032 → Subscription -- node: debayer_node, tid: 210285, topic: /camera/raw\n",
"110492373756400 → Subscription -- node: flight_mgmt_node, tid: 210285, topic: /lidar/scan\n"
]
}
],
"source": [
"callback_symbols = data_util.get_callback_symbols()\n",
"\n",
"def print_callback_info():\n",
" print(\"Callback object → symbol → owner info\\n\")\n",
" for obj, symbol in callback_symbols.items():\n",
" info = data_util.get_callback_owner_info(obj)\n",
" # fallback if for some reason Ros2DataModelUtil doesnt know this one\n",
" if info is None:\n",
" info = \"[unknown]\"\n",
"\n",
" # We don't care about timers or the parameter events topic\n",
" if 'Timer -- tid:' in info or 'topic: /parameter_events' in info:\n",
" continue\n",
" \n",
" print(f\"{obj} → {info}\")\n",
"\n",
"print_callback_info()\n",
"\n",
"# find the object ID at runtime by matching node & topic\n",
"def find_cb(node, topic):\n",
" return next(\n",
" obj for obj in callback_symbols\n",
" if f\"node: {node}\" in data_util.get_callback_owner_info(obj)\n",
" and f\"topic: {topic}\" in data_util.get_callback_owner_info(obj)\n",
" )\n",
"\n",
"# === CONFIGURATION: define DAGs here ===\n",
"# For each logical chain, map each callback_object → list of successor callback_objects\n",
"\n",
"dags = {\n",
" \"image2ground_mapping\": {\n",
" find_cb(\"debayer_node\", \"/camera/raw\"): [find_cb(\"radiometric_node\", \"/camera/debayered\")],\n",
" find_cb(\"radiometric_node\", \"/camera/debayered\"): [find_cb(\"geometric_node\", \"/camera/radiometric\")],\n",
" find_cb(\"geometric_node\", \"/camera/radiometric\"): [find_cb(\"mapping_node\", \"/camera/geometric\")],\n",
" },\n",
" \"sematic_classification\": {\n",
" find_cb(\"debayer_node\", \"/camera/raw\"): [find_cb(\"radiometric_node\", \"/camera/debayered\")],\n",
" find_cb(\"radiometric_node\", \"/camera/debayered\"): [find_cb(\"smoke_classifier_node\", \"/camera/radiometric\")],\n",
" },\n",
" \"data_streaming\": {\n",
" find_cb(\"debayer_node\", \"/camera/raw\"): [find_cb(\"radiometric_node\", \"/camera/debayered\")],\n",
" find_cb(\"radiometric_node\", \"/camera/debayered\"): [find_cb(\"geometric_node\", \"/camera/radiometric\")],\n",
" find_cb(\"geometric_node\", \"/camera/radiometric\"): [find_cb(\"mapping_node\", \"/camera/geometric\")],\n",
" find_cb(\"mapping_node\", \"/camera/geometric\"): [find_cb(\"telemetry_node\", \"/camera/mapped\")],\n",
" # fuse sensors\n",
" find_cb(\"sensor_fusion_node\", \"/gps/fix\"): [find_cb(\"telemetry_node\", \"/sensors/fused\")],\n",
" find_cb(\"sensor_fusion_node\", \"/imu/data\"): [find_cb(\"telemetry_node\", \"/sensors/fused\")],\n",
" find_cb(\"sensor_fusion_node\", \"/baro/alt\"): [find_cb(\"telemetry_node\", \"/sensors/fused\")],\n",
" # fuse fused sensors and mapping\n",
" find_cb(\"telemetry_node\", \"/camera/mapped\"): [find_cb(\"radio_tx_node\", \"/telemetry/data\")],\n",
" find_cb(\"telemetry_node\", \"/sensors/fused\"): [find_cb(\"radio_tx_node\", \"/telemetry/data\")],\n",
" },\n",
" \"flight_control\": {\n",
" # fuse sensors\n",
" find_cb(\"sensor_fusion_node\", \"/gps/fix\"): [find_cb(\"flight_mgmt_node\", \"/sensors/fused\")],\n",
" find_cb(\"sensor_fusion_node\", \"/imu/data\"): [find_cb(\"flight_mgmt_node\", \"/sensors/fused\")],\n",
" find_cb(\"sensor_fusion_node\", \"/baro/alt\"): [find_cb(\"flight_mgmt_node\", \"/sensors/fused\")],\n",
" # fuse fused sensors, lidar and control\n",
" find_cb(\"flight_mgmt_node\", \"/lidar/scan\"): [find_cb(\"flight_control_node\", \"/flight/plan\")],\n",
" find_cb(\"flight_mgmt_node\", \"/sensors/fused\"): [find_cb(\"flight_control_node\", \"/flight/plan\")],\n",
" # ToDo: remote control or autonomous flight plan\n",
" find_cb(\"flight_mgmt_node\", \"/operator/commands\"): [find_cb(\"flight_control_node\", \"/flight/plan\")],\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample 'ros2:callback_start' events:\n",
"[{'_name': 'ros2:callback_start',\n",
" '_timestamp': 1747402916746588396,\n",
" 'callback': 110492359050048,\n",
" 'cpu_id': 5,\n",
" 'is_intra_process': 0,\n",
" 'procname': 'full_topology',\n",
" 'vpid': 210285,\n",
" 'vtid': 210305},\n",
" {'_name': 'ros2:callback_start',\n",
" '_timestamp': 1747402916746626810,\n",
" 'callback': 110492367069024,\n",
" 'cpu_id': 4,\n",
" 'is_intra_process': 0,\n",
" 'procname': 'full_topology',\n",
" 'vpid': 210285,\n",
" 'vtid': 210300},\n",
" {'_name': 'ros2:callback_start',\n",
" '_timestamp': 1747402916746699511,\n",
" 'callback': 110492361080960,\n",
" 'cpu_id': 4,\n",
" 'is_intra_process': 0,\n",
" 'procname': 'full_topology',\n",
" 'vpid': 210285,\n",
" 'vtid': 210300},\n",
" {'_name': 'ros2:callback_start',\n",
" '_timestamp': 1747402916746699675,\n",
" 'callback': 110492358927152,\n",
" 'cpu_id': 5,\n",
" 'is_intra_process': 0,\n",
" 'procname': 'full_topology',\n",
" 'vpid': 210285,\n",
" 'vtid': 210305},\n",
" {'_name': 'ros2:callback_start',\n",
" '_timestamp': 1747402916746699821,\n",
" 'callback': 110492359968384,\n",
" 'cpu_id': 7,\n",
" 'is_intra_process': 0,\n",
" 'procname': 'full_topology',\n",
" 'vpid': 210285,\n",
" 'vtid': 210302}]\n",
"Path you loaded: /workspaces/ROS-Dynamic-Executor-Experiments/analysis/tracing/full_topology_tracing-20250516134156/ust/converted\n",
"Columns in callback_instances:\n",
"['callback_object', 'timestamp', 'duration', 'intra_process']\n"
]
}
],
"source": [
"import pprint\n",
"\n",
"start_samples = [ev for ev in events if ev.get('_name') == 'ros2:callback_start'][:5]\n",
"print(\"Sample 'ros2:callback_start' events:\")\n",
"pprint.pprint(start_samples)\n",
"\n",
"print(\"Path you loaded:\", path)\n",
"print(\"Columns in callback_instances:\")\n",
"print(handler.data.callback_instances.columns.tolist())\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "\"['message_id'] not in index\"",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[13], line 10\u001b[0m\n\u001b[1;32m 6\u001b[0m colour_i \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chain_name, seq \u001b[38;5;129;01min\u001b[39;00m dags\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# 1) pull invocations for each callback\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m node_tables \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 11\u001b[0m obj: handler\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mcallback_instances[\n\u001b[1;32m 12\u001b[0m handler\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mcallback_instances[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallback_object\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m==\u001b[39m obj\n\u001b[1;32m 13\u001b[0m ][[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessage_id\u001b[39m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtimestamp\u001b[39m\u001b[38;5;124m\"\u001b[39m]]\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m seq\n\u001b[1;32m 15\u001b[0m }\n\u001b[1;32m 17\u001b[0m \u001b[38;5;66;03m# 2) keep only message_ids that appear in *every* stage\u001b[39;00m\n\u001b[1;32m 18\u001b[0m common_ids \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m\u001b[38;5;241m.\u001b[39mintersection(\n\u001b[1;32m 19\u001b[0m \u001b[38;5;241m*\u001b[39m(\u001b[38;5;28mset\u001b[39m(t[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessage_id\u001b[39m\u001b[38;5;124m\"\u001b[39m]) \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m node_tables\u001b[38;5;241m.\u001b[39mvalues())\n\u001b[1;32m 20\u001b[0m )\n",
"Cell \u001b[0;32mIn[13], line 11\u001b[0m, in \u001b[0;36m<dictcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 6\u001b[0m colour_i \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chain_name, seq \u001b[38;5;129;01min\u001b[39;00m dags\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# 1) pull invocations for each callback\u001b[39;00m\n\u001b[1;32m 10\u001b[0m node_tables \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m---> 11\u001b[0m obj: \u001b[43mhandler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcallback_instances\u001b[49m\u001b[43m[\u001b[49m\n\u001b[1;32m 12\u001b[0m \u001b[43m \u001b[49m\u001b[43mhandler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcallback_instances\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallback_object\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\n\u001b[1;32m 13\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessage_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtimestamp\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 14\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m seq\n\u001b[1;32m 15\u001b[0m }\n\u001b[1;32m 17\u001b[0m \u001b[38;5;66;03m# 2) keep only message_ids that appear in *every* stage\u001b[39;00m\n\u001b[1;32m 18\u001b[0m common_ids \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mset\u001b[39m\u001b[38;5;241m.\u001b[39mintersection(\n\u001b[1;32m 19\u001b[0m \u001b[38;5;241m*\u001b[39m(\u001b[38;5;28mset\u001b[39m(t[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessage_id\u001b[39m\u001b[38;5;124m\"\u001b[39m]) \u001b[38;5;28;01mfor\u001b[39;00m t \u001b[38;5;129;01min\u001b[39;00m node_tables\u001b[38;5;241m.\u001b[39mvalues())\n\u001b[1;32m 20\u001b[0m )\n",
"File \u001b[0;32m/workspaces/ROS-Dynamic-Executor-Experiments/venv38/lib/python3.8/site-packages/pandas/core/frame.py:3767\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3765\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_iterator(key):\n\u001b[1;32m 3766\u001b[0m key \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(key)\n\u001b[0;32m-> 3767\u001b[0m indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_indexer_strict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcolumns\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m[\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 3769\u001b[0m \u001b[38;5;66;03m# take() does not accept boolean indexers\u001b[39;00m\n\u001b[1;32m 3770\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(indexer, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdtype\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m==\u001b[39m \u001b[38;5;28mbool\u001b[39m:\n",
"File \u001b[0;32m/workspaces/ROS-Dynamic-Executor-Experiments/venv38/lib/python3.8/site-packages/pandas/core/indexes/base.py:5877\u001b[0m, in \u001b[0;36mIndex._get_indexer_strict\u001b[0;34m(self, key, axis_name)\u001b[0m\n\u001b[1;32m 5874\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 5875\u001b[0m keyarr, indexer, new_indexer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reindex_non_unique(keyarr)\n\u001b[0;32m-> 5877\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_raise_if_missing\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkeyarr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis_name\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5879\u001b[0m keyarr \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtake(indexer)\n\u001b[1;32m 5880\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(key, Index):\n\u001b[1;32m 5881\u001b[0m \u001b[38;5;66;03m# GH 42790 - Preserve name from an Index\u001b[39;00m\n",
"File \u001b[0;32m/workspaces/ROS-Dynamic-Executor-Experiments/venv38/lib/python3.8/site-packages/pandas/core/indexes/base.py:5941\u001b[0m, in \u001b[0;36mIndex._raise_if_missing\u001b[0;34m(self, key, indexer, axis_name)\u001b[0m\n\u001b[1;32m 5938\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNone of [\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mkey\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m] are in the [\u001b[39m\u001b[38;5;132;01m{\u001b[39;00maxis_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m]\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 5940\u001b[0m not_found \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(ensure_index(key)[missing_mask\u001b[38;5;241m.\u001b[39mnonzero()[\u001b[38;5;241m0\u001b[39m]]\u001b[38;5;241m.\u001b[39munique())\n\u001b[0;32m-> 5941\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnot_found\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m not in index\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"\u001b[0;31mKeyError\u001b[0m: \"['message_id'] not in index\""
]
}
],
"source": [
"import numpy as np, pandas as pd\n",
"from bokeh.plotting import figure, show\n",
"from bokeh.layouts import row\n",
"from bokeh.models import ColumnDataSource, DatetimeTickFormatter\n",
"\n",
"colour_i = 0\n",
"\n",
"for chain_name, seq in dags.items():\n",
" # 1) pull invocations for each callback\n",
" node_tables = {\n",
" obj: handler.data.callback_instances[\n",
" handler.data.callback_instances[\"callback_object\"] == obj\n",
" ][[\"message_id\",\"timestamp\"]]\n",
" for obj in seq\n",
" }\n",
"\n",
" # 2) keep only message_ids that appear in *every* stage\n",
" common_ids = set.intersection(\n",
" *(set(t[\"message_id\"]) for t in node_tables.values())\n",
" )\n",
" if not common_ids:\n",
" print(f\"⚠️ no complete messages for '{chain_name}'\")\n",
" continue\n",
"\n",
" # 3) for each message_id compute Δt = last first\n",
" rows = []\n",
" for mid in common_ids:\n",
" start_time = node_tables[seq[0]].loc[\n",
" node_tables[seq[0]][\"message_id\"]==mid,\"timestamp\"\n",
" ].iloc[0]\n",
" end_time = node_tables[seq[-1]].loc[\n",
" node_tables[seq[-1]][\"message_id\"]==mid,\"timestamp\"\n",
" ].iloc[0]\n",
" rows.append({\"timestamp\": start_time,\n",
" \"latency\": (end_time-start_time).total_seconds()*1e3})\n",
"\n",
" df = pd.DataFrame(rows)\n",
" avg, jitter = df[\"latency\"].mean(), df[\"latency\"].std()\n",
"\n",
" # --- plotting (same style as your notebook) ---\n",
" src = ColumnDataSource(df)\n",
" p = figure(\n",
" title=f\"{chain_name}\\nAvg {avg:.2f}ms | Jitter {jitter:.2f}ms\",\n",
" x_axis_label=f\"first stage start ({df['timestamp'].min().strftime('%Y-%m-%d %H:%M')})\",\n",
" y_axis_label=\"latency (ms)\",\n",
" width=psize, height=psize,\n",
" )\n",
" p.line(\"timestamp\",\"latency\", source=src,\n",
" line_width=2, line_color=colours[colour_i])\n",
" p.xaxis[0].formatter = DatetimeTickFormatter(seconds=\"%Ss\")\n",
"\n",
" hist, edges = np.histogram(df[\"latency\"], bins=\"auto\")\n",
" h = figure(title=\"Latency histogram\",\n",
" x_axis_label=\"latency (ms)\", y_axis_label=\"frequency\",\n",
" width=psize, height=psize)\n",
" h.quad(bottom=0, top=hist,\n",
" left=edges[:-1], right=edges[1:],\n",
" fill_color=colours[colour_i], line_color=colours[colour_i])\n",
"\n",
" show(row(p, h))\n",
" colour_i = (colour_i + 1) % len(colours)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv38",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}