Merge branch 'refactor-data-model-utils' into 'master'
Split utils file into multiple files inside a submodule See merge request micro-ROS/ros_tracing/tracetools_analysis!29
This commit is contained in:
commit
c12488ecf9
8 changed files with 261 additions and 199 deletions
18
README.md
18
README.md
|
@ -40,24 +40,22 @@ Then navigate to the [`analysis/`](./tracetools_analysis/analysis/) directory, a
|
|||
For example:
|
||||
|
||||
```python
|
||||
from tracetools_analysis import loading
|
||||
from tracetools_analysis import processor
|
||||
from tracetools_analysis import utils
|
||||
from tracetools_analysis.loading import load_file
|
||||
from tracetools_analysis.processor import Processor
|
||||
from tracetools_analysis.processor.cpu_time import CpuTimeHandler
|
||||
from tracetools_analysis.processor.ros2 import Ros2Handler
|
||||
|
||||
# Load converted trace file
|
||||
events = load_file('/path/to/converted/file')
|
||||
events = loading.load_file('/path/to/converted/file')
|
||||
|
||||
# Process
|
||||
ros2_handler = Ros2Handler()
|
||||
cpu_handler = CpuTimeHandler()
|
||||
ros2_handler = processor.Ros2Handler()
|
||||
cpu_handler = processor.CpuTimeHandler()
|
||||
|
||||
Processor(ros2_handler, cpu_handler).process(events)
|
||||
processor.Processor(ros2_handler, cpu_handler).process(events)
|
||||
|
||||
# Use data model utils to extract information
|
||||
ros2_util = utils.RosDataModelUtil(ros2_handler.data)
|
||||
cpu_util = CpuTimeDataModelUtil(cpu_handler.data)
|
||||
ros2_util = utils.ros2.Ros2DataModelUtil(ros2_handler.data)
|
||||
cpu_util = utils.cpu_time.CpuTimeDataModelUtil(cpu_handler.data)
|
||||
|
||||
callback_durations = ros2_util.get_callback_durations()
|
||||
time_per_thread = cpu_util.get_time_per_thread()
|
||||
|
|
|
@ -55,9 +55,9 @@
|
|||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"from tracetools_analysis import utils\n",
|
||||
"from tracetools_analysis.loading import load_file\n",
|
||||
"from tracetools_analysis.processor.ros2 import Ros2Handler"
|
||||
"from tracetools_analysis.processor.ros2 import Ros2Handler\n",
|
||||
"from tracetools_analysis.utils.ros2 import Ros2DataModelUtil"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -78,7 +78,7 @@
|
|||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"data_util = utils.RosDataModelUtil(handler.data)\n",
|
||||
"data_util = Ros2DataModelUtil(handler.data)\n",
|
||||
"\n",
|
||||
"callback_symbols = data_util.get_callback_symbols()\n",
|
||||
"\n",
|
||||
|
|
|
@ -12,18 +12,18 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Module for ROS data model."""
|
||||
"""Module for ROS 2 data model."""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from . import DataModel
|
||||
|
||||
|
||||
class RosDataModel(DataModel):
|
||||
class Ros2DataModel(DataModel):
|
||||
"""
|
||||
Container to model pre-processed ROS data for analysis.
|
||||
Container to model pre-processed ROS 2 data for analysis.
|
||||
|
||||
This aims to represent the data in a ROS-aware way.
|
||||
This aims to represent the data in a ROS 2-aware way.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
|
@ -20,7 +20,7 @@ from tracetools_read import get_field
|
|||
|
||||
from . import EventHandler
|
||||
from . import EventMetadata
|
||||
from ..data_model.ros import RosDataModel
|
||||
from ..data_model.ros2 import Ros2DataModel
|
||||
|
||||
|
||||
class Ros2Handler(EventHandler):
|
||||
|
@ -70,13 +70,13 @@ class Ros2Handler(EventHandler):
|
|||
**kwargs,
|
||||
)
|
||||
|
||||
self._data_model = RosDataModel()
|
||||
self._data_model = Ros2DataModel()
|
||||
|
||||
# Temporary buffers
|
||||
self._callback_instances = {}
|
||||
|
||||
@property
|
||||
def data(self) -> RosDataModel:
|
||||
def data(self) -> Ros2DataModel:
|
||||
return self._data_model
|
||||
|
||||
def _handle_rcl_init(
|
||||
|
|
97
tracetools_analysis/tracetools_analysis/utils/__init__.py
Normal file
97
tracetools_analysis/tracetools_analysis/utils/__init__.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
# Copyright 2019 Robert Bosch GmbH
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Module for data model utility classes."""
|
||||
|
||||
from datetime import datetime as dt
|
||||
from typing import List
|
||||
from typing import Union
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from ..data_model import DataModel
|
||||
|
||||
|
||||
class DataModelUtil():
|
||||
"""
|
||||
Base data model util class, which provides functions to get more info about a data model.
|
||||
|
||||
This class provides basic util functions.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_model: DataModel,
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
:param data_model: the data model
|
||||
"""
|
||||
self.__data = data_model
|
||||
|
||||
@property
|
||||
def data(self) -> DataModel:
|
||||
return self.__data
|
||||
|
||||
@staticmethod
|
||||
def convert_time_columns(
|
||||
original: DataFrame,
|
||||
columns_ns_to_ms: Union[List[str], str] = [],
|
||||
columns_ns_to_datetime: Union[List[str], str] = [],
|
||||
inplace: bool = True,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Convert time columns from nanoseconds to either milliseconds or `datetime` objects.
|
||||
|
||||
:param original: the original `DataFrame`
|
||||
:param columns_ns_to_ms: the column(s) for which to convert ns to ms
|
||||
:param columns_ns_to_datetime: the column(s) for which to convert ns to `datetime`
|
||||
:param inplace: whether to convert in place or to return a copy
|
||||
:return: the resulting `DataFrame`
|
||||
"""
|
||||
if not isinstance(columns_ns_to_ms, list):
|
||||
columns_ns_to_ms = list(columns_ns_to_ms)
|
||||
if not isinstance(columns_ns_to_datetime, list):
|
||||
columns_ns_to_datetime = list(columns_ns_to_datetime)
|
||||
|
||||
df = original if inplace else original.copy()
|
||||
# Convert from ns to ms
|
||||
if len(columns_ns_to_ms) > 0:
|
||||
df[columns_ns_to_ms] = df[columns_ns_to_ms].applymap(
|
||||
lambda t: t / 1000000.0
|
||||
)
|
||||
# Convert from ns to ms + ms to datetime, as UTC
|
||||
if len(columns_ns_to_datetime) > 0:
|
||||
df[columns_ns_to_datetime] = df[columns_ns_to_datetime].applymap(
|
||||
lambda t: dt.utcfromtimestamp(t / 1000000000.0)
|
||||
)
|
||||
return df
|
||||
|
||||
@staticmethod
|
||||
def compute_column_difference(
|
||||
df: DataFrame,
|
||||
left_column: str,
|
||||
right_column: str,
|
||||
diff_column: str,
|
||||
) -> None:
|
||||
"""
|
||||
Create new column with difference between two columns.
|
||||
|
||||
:param df: the dataframe (inplace)
|
||||
:param left_column: the name of the left column
|
||||
:param right_column: the name of the right column
|
||||
:param diff_column: the name of the new column with differences
|
||||
"""
|
||||
df[diff_column] = df.apply(lambda row: row[left_column] - row[right_column], axis=1)
|
39
tracetools_analysis/tracetools_analysis/utils/cpu_time.py
Normal file
39
tracetools_analysis/tracetools_analysis/utils/cpu_time.py
Normal file
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2019 Robert Bosch GmbH
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Module for CPU time data model utils."""
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from . import DataModelUtil
|
||||
from ..data_model.cpu_time import CpuTimeDataModel
|
||||
|
||||
|
||||
class CpuTimeDataModelUtil(DataModelUtil):
|
||||
"""CPU time data model utility class."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_model: CpuTimeDataModel,
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
:param data_model: the data model object to use
|
||||
"""
|
||||
super().__init__(data_model)
|
||||
|
||||
def get_time_per_thread(self) -> DataFrame:
|
||||
"""Get a DataFrame of total duration for each thread."""
|
||||
return self.data.times.loc[:, ['tid', 'duration']].groupby(by='tid').sum()
|
100
tracetools_analysis/tracetools_analysis/utils/profile.py
Normal file
100
tracetools_analysis/tracetools_analysis/utils/profile.py
Normal file
|
@ -0,0 +1,100 @@
|
|||
# Copyright 2019 Robert Bosch GmbH
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Module for profiling data model utils."""
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Set
|
||||
from typing import Union
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from . import DataModelUtil
|
||||
from ..data_model.profile import ProfileDataModel
|
||||
|
||||
|
||||
class ProfileDataModelUtil(DataModelUtil):
|
||||
"""Profiling data model utility class."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_model: ProfileDataModel,
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
:param data_model: the data model object to use
|
||||
"""
|
||||
super().__init__(data_model)
|
||||
|
||||
def with_tid(
|
||||
self,
|
||||
tid: int,
|
||||
) -> DataFrame:
|
||||
return self.data.times.loc[self.data.times['tid'] == tid]
|
||||
|
||||
def get_tids(self) -> Set[int]:
|
||||
"""Get the TIDs in the data model."""
|
||||
return set(self.data.times['tid'])
|
||||
|
||||
def get_call_tree(
|
||||
self,
|
||||
tid: int,
|
||||
) -> Dict[str, List[str]]:
|
||||
depth_names = self.with_tid(tid)[
|
||||
['depth', 'function_name', 'parent_name']
|
||||
].drop_duplicates()
|
||||
# print(depth_names.to_string())
|
||||
tree = defaultdict(set)
|
||||
for _, row in depth_names.iterrows():
|
||||
depth = row['depth']
|
||||
name = row['function_name']
|
||||
parent = row['parent_name']
|
||||
if depth == 0:
|
||||
tree[name]
|
||||
else:
|
||||
tree[parent].add(name)
|
||||
return dict(tree)
|
||||
|
||||
def get_function_duration_data(
|
||||
self,
|
||||
tid: int,
|
||||
) -> List[Dict[str, Union[int, str, DataFrame]]]:
|
||||
"""Get duration data for each function."""
|
||||
tid_df = self.with_tid(tid)
|
||||
depth_names = tid_df[['depth', 'function_name', 'parent_name']].drop_duplicates()
|
||||
functions_data = []
|
||||
for _, row in depth_names.iterrows():
|
||||
depth = row['depth']
|
||||
name = row['function_name']
|
||||
parent = row['parent_name']
|
||||
data = tid_df.loc[
|
||||
(tid_df['depth'] == depth) &
|
||||
(tid_df['function_name'] == name)
|
||||
][['start_timestamp', 'duration', 'actual_duration']]
|
||||
self.compute_column_difference(
|
||||
data,
|
||||
'duration',
|
||||
'actual_duration',
|
||||
'duration_difference',
|
||||
)
|
||||
functions_data.append({
|
||||
'depth': depth,
|
||||
'function_name': name,
|
||||
'parent_name': parent,
|
||||
'data': data,
|
||||
})
|
||||
return functions_data
|
|
@ -1,4 +1,5 @@
|
|||
# Copyright 2019 Robert Bosch GmbH
|
||||
# Copyright 2019 Apex.AI, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -12,198 +13,25 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Module for data model utility classes."""
|
||||
"""Module for ROS data model utils."""
|
||||
|
||||
from collections import defaultdict
|
||||
from datetime import datetime as dt
|
||||
from typing import Any
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
from typing import Mapping
|
||||
from typing import Set
|
||||
from typing import Union
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from .data_model import DataModel
|
||||
from .data_model.cpu_time import CpuTimeDataModel
|
||||
from .data_model.profile import ProfileDataModel
|
||||
from .data_model.ros import RosDataModel
|
||||
from . import DataModelUtil
|
||||
from ..data_model.ros2 import Ros2DataModel
|
||||
|
||||
|
||||
class DataModelUtil():
|
||||
"""
|
||||
Base data model util class, which provides functions to get more info about a data model.
|
||||
|
||||
This class provides basic util functions.
|
||||
"""
|
||||
class Ros2DataModelUtil(DataModelUtil):
|
||||
"""ROS 2 data model utility class."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_model: DataModel,
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
:param data_model: the data model
|
||||
"""
|
||||
self.__data = data_model
|
||||
|
||||
@property
|
||||
def data(self) -> DataModel:
|
||||
return self.__data
|
||||
|
||||
@staticmethod
|
||||
def convert_time_columns(
|
||||
original: DataFrame,
|
||||
columns_ns_to_ms: Union[List[str], str] = [],
|
||||
columns_ns_to_datetime: Union[List[str], str] = [],
|
||||
inplace: bool = True,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Convert time columns from nanoseconds to either milliseconds or `datetime` objects.
|
||||
|
||||
:param original: the original `DataFrame`
|
||||
:param columns_ns_to_ms: the column(s) for which to convert ns to ms
|
||||
:param columns_ns_to_datetime: the column(s) for which to convert ns to `datetime`
|
||||
:param inplace: whether to convert in place or to return a copy
|
||||
:return: the resulting `DataFrame`
|
||||
"""
|
||||
if not isinstance(columns_ns_to_ms, list):
|
||||
columns_ns_to_ms = list(columns_ns_to_ms)
|
||||
if not isinstance(columns_ns_to_datetime, list):
|
||||
columns_ns_to_datetime = list(columns_ns_to_datetime)
|
||||
|
||||
df = original if inplace else original.copy()
|
||||
# Convert from ns to ms
|
||||
if len(columns_ns_to_ms) > 0:
|
||||
df[columns_ns_to_ms] = df[columns_ns_to_ms].applymap(
|
||||
lambda t: t / 1000000.0
|
||||
)
|
||||
# Convert from ns to ms + ms to datetime, as UTC
|
||||
if len(columns_ns_to_datetime) > 0:
|
||||
df[columns_ns_to_datetime] = df[columns_ns_to_datetime].applymap(
|
||||
lambda t: dt.utcfromtimestamp(t / 1000000000.0)
|
||||
)
|
||||
return df
|
||||
|
||||
@staticmethod
|
||||
def compute_column_difference(
|
||||
df: DataFrame,
|
||||
left_column: str,
|
||||
right_column: str,
|
||||
diff_column: str,
|
||||
) -> None:
|
||||
"""
|
||||
Create new column with difference between two columns.
|
||||
|
||||
:param df: the dataframe (inplace)
|
||||
:param left_column: the name of the left column
|
||||
:param right_column: the name of the right column
|
||||
:param diff_column: the name of the new column with differences
|
||||
"""
|
||||
df[diff_column] = df.apply(lambda row: row[left_column] - row[right_column], axis=1)
|
||||
|
||||
|
||||
class ProfileDataModelUtil(DataModelUtil):
|
||||
"""Profiling data model utility class."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_model: ProfileDataModel,
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
:param data_model: the data model object to use
|
||||
"""
|
||||
super().__init__(data_model)
|
||||
|
||||
def with_tid(
|
||||
self,
|
||||
tid: int,
|
||||
) -> DataFrame:
|
||||
return self.data.times.loc[self.data.times['tid'] == tid]
|
||||
|
||||
def get_tids(self) -> Set[int]:
|
||||
"""Get the TIDs in the data model."""
|
||||
return set(self.data.times['tid'])
|
||||
|
||||
def get_call_tree(
|
||||
self,
|
||||
tid: int,
|
||||
) -> Dict[str, List[str]]:
|
||||
depth_names = self.with_tid(tid)[
|
||||
['depth', 'function_name', 'parent_name']
|
||||
].drop_duplicates()
|
||||
# print(depth_names.to_string())
|
||||
tree = defaultdict(set)
|
||||
for _, row in depth_names.iterrows():
|
||||
depth = row['depth']
|
||||
name = row['function_name']
|
||||
parent = row['parent_name']
|
||||
if depth == 0:
|
||||
tree[name]
|
||||
else:
|
||||
tree[parent].add(name)
|
||||
return dict(tree)
|
||||
|
||||
def get_function_duration_data(
|
||||
self,
|
||||
tid: int,
|
||||
) -> List[Dict[str, Union[int, str, DataFrame]]]:
|
||||
"""Get duration data for each function."""
|
||||
tid_df = self.with_tid(tid)
|
||||
depth_names = tid_df[['depth', 'function_name', 'parent_name']].drop_duplicates()
|
||||
functions_data = []
|
||||
for _, row in depth_names.iterrows():
|
||||
depth = row['depth']
|
||||
name = row['function_name']
|
||||
parent = row['parent_name']
|
||||
data = tid_df.loc[
|
||||
(tid_df['depth'] == depth) &
|
||||
(tid_df['function_name'] == name)
|
||||
][['start_timestamp', 'duration', 'actual_duration']]
|
||||
self.compute_column_difference(
|
||||
data,
|
||||
'duration',
|
||||
'actual_duration',
|
||||
'duration_difference',
|
||||
)
|
||||
functions_data.append({
|
||||
'depth': depth,
|
||||
'function_name': name,
|
||||
'parent_name': parent,
|
||||
'data': data,
|
||||
})
|
||||
return functions_data
|
||||
|
||||
|
||||
class CpuTimeDataModelUtil(DataModelUtil):
|
||||
"""CPU time data model utility class."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_model: CpuTimeDataModel,
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
||||
|
||||
:param data_model: the data model object to use
|
||||
"""
|
||||
super().__init__(data_model)
|
||||
|
||||
def get_time_per_thread(self) -> DataFrame:
|
||||
"""Get a DataFrame of total duration for each thread."""
|
||||
return self.data.times.loc[:, ['tid', 'duration']].groupby(by='tid').sum()
|
||||
|
||||
|
||||
class RosDataModelUtil(DataModelUtil):
|
||||
"""ROS data model utility class."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data_model: RosDataModel,
|
||||
data_model: Ros2DataModel,
|
||||
) -> None:
|
||||
"""
|
||||
Constructor.
|
Loading…
Add table
Add a link
Reference in a new issue