rmw_cyclonedds/rmw_cyclonedds_cpp/src/Serialization.cpp
Dan Rose c0af9d898b
Cache serialization info when CDRWriter is constructed (#80)
1. Make CDRWriter remember its top level struct value type
2. Populate the trivially serializable cache when CDRWriter is created instead of waiting until the first time a message is sent.
3. Speed up arrays/sequences of trivially serializable structs

Signed-off-by: Dan Rose <dan@digilabs.io>
2019-12-13 11:05:58 -05:00

616 lines
19 KiB
C++

// Copyright 2019 Rover Robotics via Dan Rose
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// suppress definition of min/max macros on Windows.
// TODO(dan@digilabs.io): Move this closer to where Windows.h/Windef.h is included
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include "Serialization.hpp"
#include <array>
#include <limits>
#include <memory>
#include <unordered_map>
#include <utility>
#include <vector>
#include "TypeSupport2.hpp"
#include "bytewise.hpp"
namespace rmw_cyclonedds_cpp
{
struct CDRCursor
{
CDRCursor() = default;
~CDRCursor() = default;
// don't want to accidentally copy
explicit CDRCursor(CDRCursor const &) = delete;
void operator=(CDRCursor const & x) = delete;
// virtual functions to be implemented
// get the cursor's current offset.
virtual size_t offset() const = 0;
// advance the cursor.
virtual void advance(size_t n_bytes) = 0;
// Copy bytes to the current cursor location (if needed) and advance the cursor
virtual void put_bytes(const void * data, size_t size) = 0;
virtual bool ignores_data() const = 0;
// Move the logical origin this many places
virtual void rebase(ptrdiff_t relative_origin) = 0;
void align(size_t n_bytes)
{
assert(n_bytes > 0);
size_t start_offset = offset();
if (n_bytes == 1 || start_offset % n_bytes == 0) {
return;
}
advance(n_bytes - start_offset % n_bytes);
assert(offset() - start_offset < n_bytes);
assert(offset() % n_bytes == 0);
}
ptrdiff_t operator-(const CDRCursor & other) const
{
return static_cast<ptrdiff_t>(offset()) - static_cast<ptrdiff_t>(other.offset());
}
};
struct SizeCursor : public CDRCursor
{
SizeCursor()
: SizeCursor(0) {}
explicit SizeCursor(size_t initial_offset)
: m_offset(initial_offset) {}
explicit SizeCursor(CDRCursor & c)
: m_offset(c.offset()) {}
size_t m_offset;
size_t offset() const final {return m_offset;}
void advance(size_t n_bytes) final {m_offset += n_bytes;}
void put_bytes(const void *, size_t n_bytes) final {advance(n_bytes);}
bool ignores_data() const final {return true;}
void rebase(ptrdiff_t relative_origin) override
{
// we're moving the *origin* so this has to change in the *opposite* direction
m_offset -= relative_origin;
}
};
struct DataCursor : public CDRCursor
{
const void * origin;
void * position;
explicit DataCursor(void * position)
: origin(position), position(position) {}
size_t offset() const final {return (const byte *)position - (const byte *)origin;}
void advance(size_t n_bytes) final
{
std::memset(position, '\0', n_bytes);
position = byte_offset(position, n_bytes);
}
void put_bytes(const void * bytes, size_t n_bytes) final
{
if (n_bytes == 0) {
return;
}
std::memcpy(position, bytes, n_bytes);
position = byte_offset(position, n_bytes);
}
bool ignores_data() const final {return false;}
void rebase(ptrdiff_t relative_origin) final {origin = byte_offset(origin, relative_origin);}
};
enum class EncodingVersion
{
CDR_Legacy,
CDR1,
};
class CDRWriter : public BaseCDRWriter
{
public:
struct CacheKey
{
size_t align;
const AnyValueType * value_type;
bool operator==(const CacheKey & other) const
{
return align == other.align && value_type == other.value_type;
}
struct Hash
{
size_t operator()(const CacheKey & k) const
{
return std::hash<decltype(align)>{} (k.align) ^
((std::hash<decltype(value_type)>{} (k.value_type)) << 1U);
}
};
};
const EncodingVersion eversion;
const size_t max_align;
std::unique_ptr<const StructValueType> m_root_value_type;
std::unordered_map<CacheKey, bool, CacheKey::Hash> trivially_serialized_cache;
public:
explicit CDRWriter(std::unique_ptr<const StructValueType> root_value_type)
: eversion{EncodingVersion::CDR_Legacy}, max_align{8},
m_root_value_type{std::move(root_value_type)},
trivially_serialized_cache{}
{
assert(m_root_value_type);
register_serializable_type(m_root_value_type.get());
}
void register_serializable_type(const AnyValueType * t)
{
for (size_t align = 0; align < max_align; align++) {
CacheKey key{align, t};
if (trivially_serialized_cache.find(key) != trivially_serialized_cache.end()) {
continue;
}
bool & result = trivially_serialized_cache[key];
switch (t->e_value_type()) {
case EValueType::PrimitiveValueType: {
auto tt = static_cast<const PrimitiveValueType *>(t);
result = is_trivially_serialized(align, *tt);
}
break;
case EValueType::ArrayValueType: {
auto tt = static_cast<const ArrayValueType *>(t);
result = compute_trivially_serialized(align, *tt);
register_serializable_type(tt->element_value_type());
}
break;
case EValueType::StructValueType: {
auto tt = static_cast<const StructValueType *>(t);
for (size_t i = 0; i < tt->n_members(); i++) {
register_serializable_type(tt->get_member(i)->value_type);
}
result = is_trivially_serialized(align, *tt);
}
break;
case EValueType::SpanSequenceValueType: {
auto tt = static_cast<const SpanSequenceValueType *>(t);
register_serializable_type(tt->element_value_type());
}
result = false;
break;
case EValueType::U8StringValueType:
case EValueType::U16StringValueType:
case EValueType::BoolVectorValueType:
result = false;
break;
default:
unreachable();
}
}
}
size_t get_serialized_size(const void * data) const override
{
SizeCursor cursor;
serialize_top_level(&cursor, data);
return cursor.offset();
}
void serialize(void * dest, const void * data) const override
{
DataCursor cursor(dest);
serialize_top_level(&cursor, data);
}
size_t get_serialized_size(
const cdds_request_wrapper_t & request) const override
{
SizeCursor cursor;
serialize_top_level(&cursor, request);
return cursor.offset();
}
void serialize(
void * dest, const cdds_request_wrapper_t & request) const override
{
DataCursor cursor(dest);
serialize_top_level(&cursor, request);
}
void serialize_top_level(
CDRCursor * cursor, const void * data) const
{
put_rtps_header(cursor);
if (eversion == EncodingVersion::CDR_Legacy) {
cursor->rebase(+4);
}
if (m_root_value_type->n_members() == 0 && eversion == EncodingVersion::CDR_Legacy) {
char dummy = '\0';
cursor->put_bytes(&dummy, 1);
} else {
serialize(cursor, data, m_root_value_type.get());
}
if (eversion == EncodingVersion::CDR_Legacy) {
cursor->rebase(-4);
}
}
void serialize_top_level(
CDRCursor * cursor, const cdds_request_wrapper_t & request) const
{
put_rtps_header(cursor);
if (eversion == EncodingVersion::CDR_Legacy) {
cursor->rebase(+4);
}
cursor->put_bytes(&request.header.guid, sizeof(request.header.guid));
cursor->put_bytes(&request.header.seq, sizeof(request.header.seq));
serialize(cursor, request.data, m_root_value_type.get());
if (eversion == EncodingVersion::CDR_Legacy) {
cursor->rebase(-4);
}
}
protected:
void put_rtps_header(CDRCursor * cursor) const
{
// beginning of message
char eversion_byte;
switch (eversion) {
case EncodingVersion::CDR_Legacy:
eversion_byte = '\0';
break;
case EncodingVersion::CDR1:
eversion_byte = '\1';
break;
default:
unreachable();
}
std::array<char, 4> rtps_header{{eversion_byte,
// encoding format = PLAIN_CDR
(native_endian() == endian::little) ? '\1' : '\0',
// options
'\0', '\0'}};
cursor->put_bytes(rtps_header.data(), rtps_header.size());
}
void serialize_u32(CDRCursor * cursor, size_t value) const
{
assert(value <= std::numeric_limits<uint32_t>::max());
cursor->align(4);
cursor->put_bytes(&value, 4);
}
static size_t get_cdr_size_of_primitive(ROSIDL_TypeKind tk)
{
/// return 0 if the value type is not primitive
/// else returns the number of bytes it should serialize to
switch (tk) {
case ROSIDL_TypeKind::BOOLEAN:
case ROSIDL_TypeKind::OCTET:
case ROSIDL_TypeKind::UINT8:
case ROSIDL_TypeKind::INT8:
case ROSIDL_TypeKind::CHAR:
return 1;
case ROSIDL_TypeKind::UINT16:
case ROSIDL_TypeKind::INT16:
case ROSIDL_TypeKind::WCHAR:
return 2;
case ROSIDL_TypeKind::UINT32:
case ROSIDL_TypeKind::INT32:
case ROSIDL_TypeKind::FLOAT:
return 4;
case ROSIDL_TypeKind::UINT64:
case ROSIDL_TypeKind::INT64:
case ROSIDL_TypeKind::DOUBLE:
return 8;
case ROSIDL_TypeKind::LONG_DOUBLE:
return 16;
default:
return 0;
}
}
bool is_trivially_serialized(size_t align, const StructValueType & p) const
{
align %= max_align;
size_t offset = align;
for (size_t i = 0; i < p.n_members(); i++) {
auto m = p.get_member(i);
if (m->member_offset != offset - align) {
return false;
}
if (!compute_trivially_serialized(offset % max_align, m->value_type)) {
return false;
}
offset += m->value_type->sizeof_type();
}
return offset == align + p.sizeof_struct();
}
bool is_trivially_serialized(size_t align, const PrimitiveValueType & v) const
{
align %= max_align;
if (align % get_cdr_alignof_primitive(v.type_kind()) != 0) {
return false;
}
return v.sizeof_type() == get_cdr_size_of_primitive(v.type_kind());
}
bool lookup_many_trivially_serialized(size_t align, const AnyValueType * evt) const
{
align %= max_align;
// CLEVERNESS ALERT
// we take advantage of the fact that if something is aligned at offset A and at offset A+N
// then the alignment requirement of its elements divides A+k*N for all k
return lookup_trivially_serialized(align, evt) &&
lookup_trivially_serialized((align + evt->sizeof_type()) % max_align, evt);
}
bool compute_trivially_serialized(size_t align, const ArrayValueType & v) const
{
auto evt = v.element_value_type();
align %= max_align;
// CLEVERNESS ALERT
// we take advantage of the fact that if something is aligned at offset A and at offset A+N
// then the alignment requirement of its elements divides A+k*N for all k
return compute_trivially_serialized(align, evt) &&
compute_trivially_serialized((align + evt->sizeof_type()) % max_align, evt);
}
/// Returns true if a memcpy is all it takes to serialize this value
bool lookup_trivially_serialized(size_t align, const AnyValueType * p) const
{
CacheKey key{align % max_align, p};
return trivially_serialized_cache.at(key);
}
/// Returns true if a memcpy is all it takes to serialize this value
bool compute_trivially_serialized(size_t align, const AnyValueType * p) const
{
align %= max_align;
bool result;
switch (p->e_value_type()) {
case EValueType::PrimitiveValueType:
result = is_trivially_serialized(align, *static_cast<const PrimitiveValueType *>(p));
break;
case EValueType::StructValueType:
result = is_trivially_serialized(align, *static_cast<const StructValueType *>(p));
break;
case EValueType::ArrayValueType:
result = compute_trivially_serialized(align, *static_cast<const ArrayValueType *>(p));
break;
case EValueType::U8StringValueType:
case EValueType::U16StringValueType:
case EValueType::SpanSequenceValueType:
case EValueType::BoolVectorValueType:
result = false;
break;
default:
unreachable();
}
return result;
}
size_t get_cdr_alignof_primitive(ROSIDL_TypeKind tk) const
{
/// return 0 if the value type is not primitive
/// else returns the number of bytes it should align to
size_t sizeof_ = get_cdr_size_of_primitive(tk);
return sizeof_ < max_align ? sizeof_ : max_align;
}
void serialize(CDRCursor * cursor, const void * data, const PrimitiveValueType & value_type) const
{
cursor->align(get_cdr_alignof_primitive(value_type.type_kind()));
size_t n_bytes = get_cdr_size_of_primitive(value_type.type_kind());
switch (value_type.type_kind()) {
case ROSIDL_TypeKind::FLOAT:
assert(std::numeric_limits<float>::is_iec559);
cursor->put_bytes(data, n_bytes);
return;
case ROSIDL_TypeKind::DOUBLE:
assert(std::numeric_limits<double>::is_iec559);
cursor->put_bytes(data, n_bytes);
return;
case ROSIDL_TypeKind::LONG_DOUBLE:
assert(std::numeric_limits<long double>::is_iec559);
cursor->put_bytes(data, n_bytes);
return;
case ROSIDL_TypeKind::CHAR:
case ROSIDL_TypeKind::WCHAR:
case ROSIDL_TypeKind::BOOLEAN:
case ROSIDL_TypeKind::OCTET:
case ROSIDL_TypeKind::UINT8:
case ROSIDL_TypeKind::INT8:
case ROSIDL_TypeKind::UINT16:
case ROSIDL_TypeKind::INT16:
case ROSIDL_TypeKind::UINT32:
case ROSIDL_TypeKind::INT32:
case ROSIDL_TypeKind::UINT64:
case ROSIDL_TypeKind::INT64:
if (value_type.sizeof_type() == n_bytes || native_endian() == endian::little) {
cursor->put_bytes(data, n_bytes);
} else {
const void * offset_data = byte_offset(data, value_type.sizeof_type() - n_bytes);
cursor->put_bytes(offset_data, n_bytes);
}
return;
case ROSIDL_TypeKind::STRING:
case ROSIDL_TypeKind::WSTRING:
case ROSIDL_TypeKind::MESSAGE:
default:
unreachable();
}
}
void serialize(CDRCursor * cursor, const void * data, const U8StringValueType & value_type) const
{
auto str = value_type.data(data);
serialize_u32(cursor, str.size() + 1);
cursor->put_bytes(str.data(), str.size());
char terminator = '\0';
cursor->put_bytes(&terminator, 1);
}
void serialize(CDRCursor * cursor, const void * data, const U16StringValueType & value_type) const
{
auto str = value_type.data(data);
if (eversion == EncodingVersion::CDR_Legacy) {
serialize_u32(cursor, str.size());
if (cursor->ignores_data()) {
cursor->advance(sizeof(wchar_t) * str.size());
} else {
for (wchar_t c : str) {
cursor->put_bytes(&c, sizeof(wchar_t));
}
}
} else {
serialize_u32(cursor, str.size_bytes());
cursor->put_bytes(str.data(), str.size_bytes());
}
}
void serialize(CDRCursor * cursor, const void * data, const ArrayValueType & value_type) const
{
serialize_many(
cursor, value_type.get_data(data), value_type.array_size(), value_type.element_value_type());
}
void serialize(
CDRCursor * cursor, const void * data,
const SpanSequenceValueType & value_type) const
{
size_t count = value_type.sequence_size(data);
serialize_u32(cursor, count);
serialize_many(
cursor, value_type.sequence_contents(data), count, value_type.element_value_type());
}
void serialize(
CDRCursor * cursor, const void * data,
const BoolVectorValueType & value_type) const
{
size_t count = value_type.size(data);
serialize_u32(cursor, count);
if (cursor->ignores_data()) {
cursor->advance(count);
} else {
for (auto iter = value_type.begin(data); iter != value_type.end(data); ++iter) {
bool b = *iter;
cursor->put_bytes(&b, 1);
}
}
}
void serialize(CDRCursor * cursor, const void * data, const AnyValueType * value_type) const
{
if (lookup_trivially_serialized(cursor->offset(), value_type)) {
cursor->put_bytes(data, value_type->sizeof_type());
} else {
// value_type->apply([&](const auto & vt) {return serialize(cursor, data, vt);});
if (auto s = dynamic_cast<const PrimitiveValueType *>(value_type)) {
return serialize(cursor, data, *s);
}
if (auto s = dynamic_cast<const U8StringValueType *>(value_type)) {
return serialize(cursor, data, *s);
}
if (auto s = dynamic_cast<const U16StringValueType *>(value_type)) {
return serialize(cursor, data, *s);
}
if (auto s = dynamic_cast<const StructValueType *>(value_type)) {
return serialize(cursor, data, *s);
}
if (auto s = dynamic_cast<const ArrayValueType *>(value_type)) {
return serialize(cursor, data, *s);
}
if (auto s = dynamic_cast<const SpanSequenceValueType *>(value_type)) {
return serialize(cursor, data, *s);
}
if (auto s = dynamic_cast<const BoolVectorValueType *>(value_type)) {
return serialize(cursor, data, *s);
}
unreachable();
}
}
void serialize_many(
CDRCursor * cursor, const void * data, size_t count,
const AnyValueType * vt) const
{
// nothing to do; not even alignment
if (count == 0) {
return;
}
// Serialize the first element.
serialize(cursor, data, vt);
// If the value type is primitive, we are now aligned.
// It might be that the first element is not trivially serialized but the rest are;
// e.g. if any element in a struct has CDR alignment more stringent than the first element.
data = byte_offset(data, vt->sizeof_type());
--count;
if (count == 0) {
return;
}
if (lookup_many_trivially_serialized(cursor->offset(), vt)) {
size_t value_size = vt->sizeof_type();
cursor->put_bytes(data, count * value_size);
return;
} else {
for (size_t i = 0; i < count; i++) {
auto element = byte_offset(data, i * vt->sizeof_type());
serialize(cursor, element, vt);
}
}
}
void serialize(
CDRCursor * cursor, const void * struct_data,
const StructValueType & struct_info) const
{
for (size_t i = 0; i < struct_info.n_members(); i++) {
auto member_info = struct_info.get_member(i);
auto value_type = member_info->value_type;
auto member_data = byte_offset(struct_data, member_info->member_offset);
serialize(cursor, member_data, value_type);
}
}
};
std::unique_ptr<BaseCDRWriter> make_cdr_writer(std::unique_ptr<StructValueType> value_type)
{
return std::make_unique<CDRWriter>(std::move(value_type));
}
} // namespace rmw_cyclonedds_cpp