dataflow-analysis/message_tree/message_tree_plots.py
Maximilian Schmeller 4ddc69562f More documentation
2022-12-29 15:09:59 +09:00

66 lines
2.2 KiB
Python

from typing import List
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from message_tree.message_tree_structure import E2EBreakdownItem
def e2e_breakdown_type_hist(items: List[E2EBreakdownItem]):
"""
Given a list of e2e breakdown instances of the form `("<type>", <duration>)`, plots a histogram for each encountered type.
Be careful not to mix items of different points in the DFG (i.e. do NOT input dataflows here).
:param items: The list of items to be turned into a histogram
:return: The figure of the plot
"""
plot_types = ("dds", "idle", "cpu")
assert all(item.type in plot_types for item in items)
fig: Figure
fig, axes = plt.subplots(1, 3, num="E2E type breakdown histograms")
fig.suptitle("E2E Latency Breakdown by Resource Type")
for type, ax in zip(plot_types, axes):
ax: Axes
durations = [item.duration for item in items if item.type == type]
ax.set_title(type)
ax.hist(durations)
ax.set_xlabel("Duration [s]")
ax.set_ylabel("Occurrences")
return fig
def e2e_breakdown_stack(*paths: List[E2EBreakdownItem]):
"""
Plot a timeseries of stacked DDS/Idle/CPU latencies from `paths`.
Each path has to be the same length
:param paths: The E2E paths to plot
:return: The figure of the plot
"""
fig: Figure
ax: Axes
fig, ax = plt.subplots(num="E2E type breakdown stackplot")
fig.suptitle("Detailed E2E Latency Path Breakdown")
if not paths:
return fig
plot_types = ("dds", "idle", "cpu")
type_indices = {type: [i for i, item in enumerate(paths[0]) if item.type == type] for type in plot_types}
type_durations = {}
for type in plot_types:
durations = [sum([item.duration for i, item in enumerate(path) if i in type_indices[type]]) for path in paths]
durations = np.array(durations)
type_durations[type] = durations
labels, duration_arrays = zip(*sorted(list(type_durations.items()), key=lambda pair: pair[1].var(), reverse=False))
ax.stackplot(range(len(paths)), *duration_arrays, labels=labels)
ax.legend()
return fig