wip: split plots and normalize y axis as well

This commit is contained in:
Niklas Halle 2025-06-28 08:49:29 +00:00
parent ea5754c336
commit defbc4456e

View file

@ -13,18 +13,26 @@ def parse_arguments():
help='Path to directory containing experiment subdirectories') help='Path to directory containing experiment subdirectories')
parser.add_argument('--supplementary', '-s', required=True, parser.add_argument('--supplementary', '-s', required=True,
help='Path to supplementary.csv file with input delays') help='Path to supplementary.csv file with input delays')
parser.add_argument('--output', '-o', default='cross_experiment_analysis.png', parser.add_argument('--output', '-o', default='cross_experiment_analysis',
help='Output filename for the plot') help='Output filename prefix for the plots (will add experiment type and .png)')
parser.add_argument('--experiment-duration', '-d', type=int, default=20, parser.add_argument('--experiment-duration', '-d', type=int, default=20,
help='Duration of each experiment in seconds (default: 20)') help='Duration of each experiment in seconds (default: 20)')
return parser.parse_args() return parser.parse_args()
def load_supplementary_data(supplementary_path): def load_supplementary_data(supplementary_path):
"""Load the supplementary data with input delays for each chain.""" """Load the supplementary data with input delays and theoretical perfect times for each chain."""
supp_df = pd.read_csv(supplementary_path) supp_df = pd.read_csv(supplementary_path)
# Create a dictionary for quick lookup # Create dictionaries for quick lookup
delay_dict = dict(zip(supp_df['chain'], supp_df['input_delay'])) delay_dict = dict(zip(supp_df['chain'], supp_df['input_delay']))
return delay_dict
# Load theoretical perfect e2e time (assuming the third column exists)
if len(supp_df.columns) >= 3:
perfect_time_dict = dict(zip(supp_df['chain'], supp_df.iloc[:, 2])) # Third column
return delay_dict, perfect_time_dict
else:
print("Warning: No third column found for theoretical perfect times. Using input_delay as fallback.")
perfect_time_dict = delay_dict.copy() # Fallback to input_delay
return delay_dict, perfect_time_dict
def calculate_theoretical_max_runs(chain, input_delay_ms, experiment_duration_s): def calculate_theoretical_max_runs(chain, input_delay_ms, experiment_duration_s):
"""Calculate the theoretical maximum number of runs for a chain.""" """Calculate the theoretical maximum number of runs for a chain."""
@ -32,7 +40,7 @@ def calculate_theoretical_max_runs(chain, input_delay_ms, experiment_duration_s)
max_runs = runs_per_second * experiment_duration_s max_runs = runs_per_second * experiment_duration_s
return int(max_runs) return int(max_runs)
def load_experiment_data(experiments_dir, delay_dict, experiment_duration): def load_experiment_data(experiments_dir, delay_dict, perfect_time_dict, experiment_duration):
"""Load all experiment data and calculate performance metrics.""" """Load all experiment data and calculate performance metrics."""
all_data = [] all_data = []
@ -57,9 +65,10 @@ def load_experiment_data(experiments_dir, delay_dict, experiment_duration):
# Group by chain and calculate metrics # Group by chain and calculate metrics
for chain, chain_data in df.groupby('chain'): for chain, chain_data in df.groupby('chain'):
if chain in delay_dict: if chain in delay_dict and chain in perfect_time_dict:
# Calculate theoretical maximum runs # Calculate theoretical maximum runs
input_delay = delay_dict[chain] input_delay = delay_dict[chain]
perfect_time = perfect_time_dict[chain]
theoretical_max = calculate_theoretical_max_runs( theoretical_max = calculate_theoretical_max_runs(
chain, input_delay, experiment_duration chain, input_delay, experiment_duration
) )
@ -69,6 +78,9 @@ def load_experiment_data(experiments_dir, delay_dict, experiment_duration):
mean_latency = chain_data['mean'].mean() mean_latency = chain_data['mean'].mean()
std_latency = chain_data['std'].mean() std_latency = chain_data['std'].mean()
# Normalize latency by theoretical perfect time
normalized_latency = mean_latency / perfect_time
# Calculate percentage of theoretical maximum # Calculate percentage of theoretical maximum
completion_percentage = (actual_runs / theoretical_max) * 100 completion_percentage = (actual_runs / theoretical_max) * 100
@ -86,96 +98,179 @@ def load_experiment_data(experiments_dir, delay_dict, experiment_duration):
'experiment_dir': exp_dir.name, 'experiment_dir': exp_dir.name,
'chain': chain, 'chain': chain,
'mean_latency_ms': mean_latency, 'mean_latency_ms': mean_latency,
'normalized_latency': normalized_latency,
'std_latency_ms': std_latency, 'std_latency_ms': std_latency,
'actual_runs': actual_runs, 'actual_runs': actual_runs,
'theoretical_max_runs': theoretical_max, 'theoretical_max_runs': theoretical_max,
'completion_percentage': completion_percentage, 'completion_percentage': completion_percentage,
'input_delay_ms': input_delay 'input_delay_ms': input_delay,
'perfect_time_ms': perfect_time
}) })
else: else:
print(f"Warning: Chain '{chain}' not found in supplementary data") missing_info = []
if chain not in delay_dict:
missing_info.append("input delay")
if chain not in perfect_time_dict:
missing_info.append("perfect time")
print(f"Warning: Chain '{chain}' missing {', '.join(missing_info)} in supplementary data")
except Exception as e: except Exception as e:
print(f"Error processing {results_path}: {e}") print(f"Error processing {results_path}: {e}")
return pd.DataFrame(all_data) return pd.DataFrame(all_data)
def create_visualization(data_df, output_path): def create_visualizations(data_df, output_prefix):
"""Create the main visualization plot.""" """Create separate visualization plots for each experiment type."""
plt.style.use('seaborn-v0_8-darkgrid') plt.style.use('seaborn-v0_8-darkgrid')
# Get unique experiment types
experiment_types = sorted(data_df['experiment_type'].unique())
print(f"Creating {len(experiment_types)} separate plots for experiment types: {experiment_types}")
created_files = []
for exp_type in experiment_types:
# Filter data for this experiment type
exp_data = data_df[data_df['experiment_type'] == exp_type]
# Get unique chains for this experiment
chains = sorted(exp_data['chain'].unique())
# Create color palette for chains
chain_colors = sns.color_palette("husl", len(chains))
chain_color_map = dict(zip(chains, chain_colors))
# Set up the figure # Set up the figure
fig, ax = plt.subplots(figsize=(20, 12)) fig, ax = plt.subplots(figsize=(14, 10))
# Get unique experiment types and chains for color/marker assignment # Plot data points for each chain
experiment_types = data_df['experiment_type'].unique() for chain in chains:
chains = data_df['chain'].unique() chain_data = exp_data[exp_data['chain'] == chain]
# Create color palette for experiment types
exp_colors = sns.color_palette("husl", len(experiment_types))
exp_color_map = dict(zip(experiment_types, exp_colors))
# Create marker styles for chains (cycle through available markers)
markers = ['o', 's', '^', 'D', 'v', '<', '>', 'p', '*', 'h', 'H', '+', 'x']
chain_markers = dict(zip(chains, markers[:len(chains)]))
# Plot data points
for _, row in data_df.iterrows():
ax.scatter( ax.scatter(
row['completion_percentage'], chain_data['completion_percentage'],
row['mean_latency_ms'], chain_data['normalized_latency'],
color=exp_color_map[row['experiment_type']], color=chain_color_map[chain],
marker=chain_markers[row['chain']], label=chain,
s=100, s=120,
alpha=0.7, alpha=0.8,
edgecolors='black', edgecolors='black',
linewidth=0.5 linewidth=0.8
) )
# Set labels and title # Set labels and title
ax.set_xlabel('Completion Rate (% of Theoretical Maximum)', fontsize=14, fontweight='bold') ax.set_xlabel('Completion Rate (% of Theoretical Maximum)', fontsize=14, fontweight='bold')
ax.set_ylabel('Mean End-to-End Latency (ms)', fontsize=14, fontweight='bold') ax.set_ylabel('Normalized Latency (Actual / Theoretical Perfect)', fontsize=14, fontweight='bold')
ax.set_title('Cross-Experiment Performance Analysis\nMean Latency vs Chain Completion Rate', ax.set_title(f'Performance Analysis: {exp_type}\nNormalized Latency vs Chain Completion Rate',
fontsize=16, fontweight='bold', pad=20) fontsize=16, fontweight='bold', pad=20)
# Add grid for better readability # Add grid for better readability
ax.grid(True, alpha=0.3) ax.grid(True, alpha=0.3)
# Create legends with better positioning # Set axis limits
# Legend for experiment types (colors) ax.set_xlim(0, 107)
exp_legend_elements = [plt.Line2D([0], [0], marker='o', color='w', ax.set_ylim(bottom=1)
markerfacecolor=color, markersize=10,
label=exp_type, markeredgecolor='black', markeredgewidth=1)
for exp_type, color in exp_color_map.items()]
# Legend for chains (markers) - limit to avoid overcrowding # Create legend for chains
max_chains_in_legend = min(len(chains), 11) # Show max 11 chains legend = ax.legend(title='Chain Output',
chain_legend_elements = [plt.Line2D([0], [0], marker=marker, color='w', loc='best',
markerfacecolor='gray', markersize=10, fontsize=10,
label=chain.split(' --> ')[-1], markeredgecolor='black', markeredgewidth=1) title_fontsize=12,
for chain, marker in list(chain_markers.items())[:max_chains_in_legend]] framealpha=0.9,
fancybox=True,
shadow=True,
bbox_to_anchor=(1.05, 1))
# Position legends inside the plot area # Adjust layout to accommodate legend
legend1 = ax.legend(handles=exp_legend_elements, title='Experiment Type', plt.tight_layout()
loc='upper right', fontsize=10, title_fontsize=12,
framealpha=0.9, fancybox=True, shadow=True)
# Temporarily remove first legend to add second one
legend1.remove()
legend2 = ax.legend(handles=chain_legend_elements, title='Chain Output',
loc='lower right', fontsize=9, title_fontsize=11,
framealpha=0.9, fancybox=True, shadow=True)
# Add both legends back
ax.add_artist(legend1)
ax.add_artist(legend2)
# Save the plot # Save the plot
safe_exp_name = exp_type.replace('/', '_').replace(' ', '_')
output_path = f"{output_prefix}_{safe_exp_name}.png"
plt.savefig(output_path, dpi=300, bbox_inches='tight') plt.savefig(output_path, dpi=300, bbox_inches='tight')
created_files.append(output_path)
# Show the plot
plt.show() plt.show()
return fig # Close the figure to free memory
plt.close()
return created_files
def create_combined_summary_plot(data_df, output_prefix):
"""Create a combined summary plot showing all experiment types in subplots."""
experiment_types = sorted(data_df['experiment_type'].unique())
n_experiments = len(experiment_types)
# Calculate subplot grid dimensions
n_cols = min(3, n_experiments) # Max 3 columns
n_rows = (n_experiments + n_cols - 1) // n_cols # Ceiling division
fig, axes = plt.subplots(n_rows, n_cols, figsize=(6*n_cols, 5*n_rows))
# Ensure axes is always a 2D array
if n_rows == 1 and n_cols == 1:
axes = np.array([[axes]])
elif n_rows == 1:
axes = axes.reshape(1, -1)
elif n_cols == 1:
axes = axes.reshape(-1, 1)
plt.style.use('seaborn-v0_8-darkgrid')
for i, exp_type in enumerate(experiment_types):
row = i // n_cols
col = i % n_cols
ax = axes[row, col]
# Filter data for this experiment type
exp_data = data_df[data_df['experiment_type'] == exp_type]
chains = sorted(exp_data['chain'].unique())
# Create color palette for chains
chain_colors = sns.color_palette("husl", len(chains))
chain_color_map = dict(zip(chains, chain_colors))
# Plot data points
for chain in chains:
chain_data = exp_data[exp_data['chain'] == chain]
ax.scatter(
chain_data['completion_percentage'],
chain_data['normalized_latency'],
color=chain_color_map[chain],
s=60,
alpha=0.7,
edgecolors='black',
linewidth=0.5
)
ax.set_title(exp_type, fontsize=12, fontweight='bold')
ax.set_xlabel('Completion Rate (%)', fontsize=10)
ax.set_ylabel('Normalized Latency', fontsize=10)
ax.grid(True, alpha=0.3)
# Set axis limits for consistency
ax.set_xlim(0, 107)
ax.set_ylim(bottom=1)
# Hide unused subplots
for i in range(n_experiments, n_rows * n_cols):
row = i // n_cols
col = i % n_cols
axes[row, col].set_visible(False)
plt.suptitle('Performance Analysis Summary - All Experiment Types\n(Normalized Latency vs Completion Rate)',
fontsize=16, fontweight='bold', y=0.98)
plt.tight_layout()
summary_output = f"{output_prefix}_summary.png"
plt.savefig(summary_output, dpi=300, bbox_inches='tight')
plt.show()
plt.close()
return summary_output
def print_summary_statistics(data_df): def print_summary_statistics(data_df):
"""Print summary statistics for the analysis.""" """Print summary statistics for the analysis."""
@ -190,6 +285,7 @@ def print_summary_statistics(data_df):
print("\nPer Experiment Type Summary:") print("\nPer Experiment Type Summary:")
exp_summary = data_df.groupby('experiment_type').agg({ exp_summary = data_df.groupby('experiment_type').agg({
'completion_percentage': ['mean', 'std', 'min', 'max'], 'completion_percentage': ['mean', 'std', 'min', 'max'],
'normalized_latency': ['mean', 'std', 'min', 'max'],
'mean_latency_ms': ['mean', 'std', 'min', 'max'], 'mean_latency_ms': ['mean', 'std', 'min', 'max'],
'chain': 'count' 'chain': 'count'
}).round(2) }).round(2)
@ -198,6 +294,7 @@ def print_summary_statistics(data_df):
print("\nPer Chain Summary:") print("\nPer Chain Summary:")
chain_summary = data_df.groupby('chain').agg({ chain_summary = data_df.groupby('chain').agg({
'completion_percentage': ['mean', 'std'], 'completion_percentage': ['mean', 'std'],
'normalized_latency': ['mean', 'std'],
'mean_latency_ms': ['mean', 'std'], 'mean_latency_ms': ['mean', 'std'],
'experiment_type': 'count' 'experiment_type': 'count'
}).round(2) }).round(2)
@ -207,12 +304,22 @@ def print_summary_statistics(data_df):
print("\nBest Performance (highest completion rate):") print("\nBest Performance (highest completion rate):")
best_completion = data_df.loc[data_df['completion_percentage'].idxmax()] best_completion = data_df.loc[data_df['completion_percentage'].idxmax()]
print(f" {best_completion['experiment_type']} - {best_completion['chain']}") print(f" {best_completion['experiment_type']} - {best_completion['chain']}")
print(f" Completion: {best_completion['completion_percentage']:.1f}%, Latency: {best_completion['mean_latency_ms']:.1f}ms") print(f" Completion: {best_completion['completion_percentage']:.1f}%, Normalized Latency: {best_completion['normalized_latency']:.2f}x, Raw Latency: {best_completion['mean_latency_ms']:.1f}ms")
print("\nWorst Performance (lowest completion rate):") print("\nWorst Performance (lowest completion rate):")
worst_completion = data_df.loc[data_df['completion_percentage'].idxmin()] worst_completion = data_df.loc[data_df['completion_percentage'].idxmin()]
print(f" {worst_completion['experiment_type']} - {worst_completion['chain']}") print(f" {worst_completion['experiment_type']} - {worst_completion['chain']}")
print(f" Completion: {worst_completion['completion_percentage']:.1f}%, Latency: {worst_completion['mean_latency_ms']:.1f}ms") print(f" Completion: {worst_completion['completion_percentage']:.1f}%, Normalized Latency: {worst_completion['normalized_latency']:.2f}x, Raw Latency: {worst_completion['mean_latency_ms']:.1f}ms")
print("\nBest Normalized Latency (closest to theoretical perfect):")
best_latency = data_df.loc[data_df['normalized_latency'].idxmin()]
print(f" {best_latency['experiment_type']} - {best_latency['chain']}")
print(f" Normalized Latency: {best_latency['normalized_latency']:.2f}x, Completion: {best_latency['completion_percentage']:.1f}%, Raw Latency: {best_latency['mean_latency_ms']:.1f}ms")
print("\nWorst Normalized Latency (furthest from theoretical perfect):")
worst_latency = data_df.loc[data_df['normalized_latency'].idxmax()]
print(f" {worst_latency['experiment_type']} - {worst_latency['chain']}")
print(f" Normalized Latency: {worst_latency['normalized_latency']:.2f}x, Completion: {worst_latency['completion_percentage']:.1f}%, Raw Latency: {worst_latency['mean_latency_ms']:.1f}ms")
def main(): def main():
args = parse_arguments() args = parse_arguments()
@ -221,12 +328,13 @@ def main():
# Load supplementary data # Load supplementary data
print(f"Loading supplementary data from: {args.supplementary}") print(f"Loading supplementary data from: {args.supplementary}")
delay_dict = load_supplementary_data(args.supplementary) delay_dict, perfect_time_dict = load_supplementary_data(args.supplementary)
print(f"Found delay information for {len(delay_dict)} chains") print(f"Found delay information for {len(delay_dict)} chains")
print(f"Found perfect time information for {len(perfect_time_dict)} chains")
# Load all experiment data # Load all experiment data
print(f"Loading experiment data from: {args.experiments_dir}") print(f"Loading experiment data from: {args.experiments_dir}")
data_df = load_experiment_data(args.experiments_dir, delay_dict, args.experiment_duration) data_df = load_experiment_data(args.experiments_dir, delay_dict, perfect_time_dict, args.experiment_duration)
if data_df.empty: if data_df.empty:
print("No data found! Please check your paths and file formats.") print("No data found! Please check your paths and file formats.")
@ -234,18 +342,26 @@ def main():
print(f"Loaded data for {len(data_df)} experiment-chain combinations") print(f"Loaded data for {len(data_df)} experiment-chain combinations")
# Create visualization # Create individual visualizations for each experiment type
print(f"Creating visualization...") print(f"Creating individual visualizations...")
create_visualization(data_df, args.output) created_files = create_visualizations(data_df, args.output)
# Create combined summary plot
print(f"Creating combined summary plot...")
summary_file = create_combined_summary_plot(data_df, args.output)
created_files.append(summary_file)
# Print summary statistics # Print summary statistics
print_summary_statistics(data_df) print_summary_statistics(data_df)
# Save detailed data to CSV for further analysis # Save detailed data to CSV for further analysis
csv_output = args.output.replace('.png', '_detailed_data.csv') csv_output = f"{args.output}_detailed_data.csv"
data_df.to_csv(csv_output, index=False) data_df.to_csv(csv_output, index=False)
print(f"\nDetailed data saved to: {csv_output}") print(f"\nDetailed data saved to: {csv_output}")
print(f"Visualization saved to: {args.output}")
print(f"\nCreated visualization files:")
for file in created_files:
print(f" - {file}")
if __name__ == "__main__": if __name__ == "__main__":
main() main()