Allow for better TF2 insight and analysis [WIP], write more outputs to the specified out dir and not to the project dir, add E2E_EXACT_PATH setting to speed up execution for known paths
This commit is contained in:
parent
e2cdfade31
commit
dc3a8084b1
5 changed files with 185 additions and 118 deletions
|
@ -8,16 +8,8 @@
|
|||
"import os\n",
|
||||
"import sys\n",
|
||||
"import re\n",
|
||||
"import math\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"from bisect import bisect_right\n",
|
||||
"from termcolor import colored\n",
|
||||
"\n",
|
||||
"import matplotlib.patches as mpatch\n",
|
||||
"from scipy import stats\n",
|
||||
"from cycler import cycler\n",
|
||||
"\n",
|
||||
"import glob\n",
|
||||
"from typing import Iterable\n",
|
||||
"\n",
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
|
@ -70,7 +62,7 @@
|
|||
"# Using the path \"/ust\" at the end is optional but greatly reduces processing time\n",
|
||||
"# if kernel traces are also present.\n",
|
||||
"# TR_PATH = \"~/Downloads/iteration1_worker1/aw_replay/tracing/scenario-trace/ust\"\n",
|
||||
"TR_PATH = \"data/trace-awsim-x86/ust\"\n",
|
||||
"TR_PATH = \"/home/max/Projects/ma-measurements/artifacts_20221223_155956/tracing/max-ma-trace/ust\"\n",
|
||||
"\n",
|
||||
"# Path to the folder all artifacts from this notebook are saved to.\n",
|
||||
"# This entails plots as well as data tables.\n",
|
||||
|
@ -80,7 +72,7 @@
|
|||
"CACHING_ENABLED = False\n",
|
||||
"\n",
|
||||
"# Whether to annotate topics/publications with bandwidth/message size\n",
|
||||
"BW_ENABLED = True\n",
|
||||
"BW_ENABLED = False\n",
|
||||
"# Path to a HDF5 file as output by ma-hw-perf-tools/messages/record.bash\n",
|
||||
"# Used to annotate message sizes in E2E latency calculations\n",
|
||||
"BW_PATH = \"../ma-hw-perf-tools/data/messages-x86.h5\"\n",
|
||||
|
@ -95,9 +87,9 @@
|
|||
"\n",
|
||||
"# Whether to compute data flow graphs.\n",
|
||||
"# If you are only interested in E2E latencies, set this to False\n",
|
||||
"DFG_ENABLED = True\n",
|
||||
"DFG_ENABLED = False\n",
|
||||
"# Whether to plot data flow graphs (ignored if DFG_ENABLED is False)\n",
|
||||
"DFG_PLOT = True\n",
|
||||
"DFG_PLOT = False\n",
|
||||
"\n",
|
||||
"# The maximum node namespace hierarchy level to be plotted.\n",
|
||||
"# Top-level (1): e.g. /sensing, /control, etc.\n",
|
||||
|
@ -109,9 +101,9 @@
|
|||
"DFG_INPUT_NODE_PATTERNS = [r\"^/sensing\"]\n",
|
||||
"# RegEx pattern for nodes that shall be marked as system outputs\n",
|
||||
"# These will be plotted with a double border\n",
|
||||
"DFG_OUTPUT_NODE_PATTERNS = [r\"^/awapi\", r\"^/control/external_cmd_converter\", \"emergency\"]\n",
|
||||
"DFG_OUTPUT_NODE_PATTERNS = [r\"^/control/external_cmd_converter\"]\n",
|
||||
"# RegEx for nodes which shall not be plotted in the DFG\n",
|
||||
"DFG_EXCL_NODE_PATTERNS = [r\"^/rviz2\", r\"transform_listener_impl\"]\n",
|
||||
"DFG_EXCL_NODE_PATTERNS = [r\"^/rviz2\"]\n",
|
||||
"\n",
|
||||
"# Whether to compute E2E latencies.\n",
|
||||
"E2E_ENABLED = True\n",
|
||||
|
@ -131,15 +123,48 @@
|
|||
"E2E_OUTPUT_TOPIC_PATTERNS = [r\"^/control/command/control_cmd$\"]\n",
|
||||
"# All topics containing any of these RegEx patterns are considered input topics in E2E latency calculations\n",
|
||||
"# E.g. r\"^/sensing/\" will cover all sensing topics\n",
|
||||
"E2E_INPUT_TOPIC_PATTERNS = [r\"^/sensing/.*?pointcloud\"]\n",
|
||||
"E2E_INPUT_TOPIC_PATTERNS = [r\"pointcloud\"]\n",
|
||||
"\n",
|
||||
"# E2E paths are uniquely identified by a string like \"/topic/1 -> void(Node1)(args1) -> /topic/2 -> void(Node2)(args2) -> void(Node2)(args3) -> ...\".\n",
|
||||
"# Certain patterns only occur in initial setup or in scenario switching and can be excluded via RegEx patterns here.\n",
|
||||
"E2E_EXCL_PATH_PATTERNS = [r\"NDTScanMatcher\", r\"^/parameter_events\", \"hazard\", \"turn_indicator\", \"gear_cmd\", \"emergency_cmd\",\n",
|
||||
" \"external_cmd\", \"/control/operation_mode\", \"/planning/scenario_planning/scenario$\"]\n",
|
||||
"E2E_EXCL_PATH_PATTERNS = [r\"^/parameter_events\", \"hazard\", \"turn_indicator\", \"gear_cmd\", \"emergency_cmd\", \"emergency_state\",\n",
|
||||
" \"external_cmd\", \"/control/operation_mode\"]\n",
|
||||
"\n",
|
||||
"# To specify paths of interest, topic/callback name patterns that HAVE TO OCCUR in each E2E path can be specified as RegEx here.\n",
|
||||
"E2E_INCL_PATH_PATTERNS = [\"BehaviorPathPlanner\", \"BehaviorVelocityPlanner\", \"pointcloud_preprocessor::Filter\", r\"^/sensing/.*?pointcloud\"]\n",
|
||||
"#E2E_INCL_PATH_PATTERNS = [\"BehaviorPathPlanner\", \"BehaviorVelocityPlanner\", \"pointcloud_preprocessor::Filter\", r\"^/sensing/.*?pointcloud\"]\n",
|
||||
"E2E_INCL_PATH_PATTERNS = []\n",
|
||||
"\n",
|
||||
"# If an exact path through the system is known, this variabe can be set to a list (order matters!) of all elements on the path.\n",
|
||||
"# The first item ist the one at the \"input end\" of the system, the last one the \"output end\".\n",
|
||||
"E2E_EXACT_PATH = [\n",
|
||||
" \"void(pointcloud_preprocessor::Filter)(sensor_msgs::msg::PointCloud2,pcl_msgs::msg::PointIndices)\",\n",
|
||||
" \"/localization/util/downsample/pointcloud\",\n",
|
||||
" \"void(NDTScanMatcher)(sensor_msgs::msg::PointCloud2)\",\n",
|
||||
" \"/localization/pose_estimator/pose_with_covariance\",\n",
|
||||
" \"void(EKFLocalizer)(geometry_msgs::msg::PoseWithCovarianceStamped)\",\n",
|
||||
" \"void(EKFLocalizer)()\",\n",
|
||||
" \"/localization/pose_twist_fusion_filter/kinematic_state\",\n",
|
||||
" \"void(StopFilter)(nav_msgs::msg::Odometry)\",\n",
|
||||
" \"/localization/kinematic_state\",\n",
|
||||
" \"void(behavior_path_planner::BehaviorPathPlannerNode)(nav_msgs::msg::Odometry)\",\n",
|
||||
" \"void(behavior_path_planner::BehaviorPathPlannerNode)()\",\n",
|
||||
" \"/planning/scenario_planning/lane_driving/behavior_planning/path_with_lane_id\",\n",
|
||||
" \"void(behavior_velocity_planner::BehaviorVelocityPlannerNode)(autoware_auto_planning_msgs::msg::PathWithLaneId)\",\n",
|
||||
" \"/planning/scenario_planning/lane_driving/behavior_planning/path\",\n",
|
||||
" \"void(ObstacleAvoidancePlanner)(autoware_auto_planning_msgs::msg::Path)\",\n",
|
||||
" \"/planning/scenario_planning/lane_driving/motion_planning/obstacle_avoidance_planner/trajectory\",\n",
|
||||
" \"void(motion_planning::ObstacleStopPlannerNode)(autoware_auto_planning_msgs::msg::Trajectory)\",\n",
|
||||
" \"/planning/scenario_planning/lane_driving/trajectory\",\n",
|
||||
" \"void(ScenarioSelectorNode)(autoware_auto_planning_msgs::msg::Trajectory)\",\n",
|
||||
" \"/planning/scenario_planning/scenario_selector/trajectory\",\n",
|
||||
" \"void(motion_velocity_smoother::MotionVelocitySmootherNode)(autoware_auto_planning_msgs::msg::Trajectory)\",\n",
|
||||
" \"/planning/scenario_planning/trajectory\",\n",
|
||||
" \"void(autoware::motion::control::trajectory_follower_nodes::Controller)(autoware_auto_planning_msgs::msg::Trajectory)\",\n",
|
||||
" \"void(autoware::motion::control::trajectory_follower_nodes::Controller)()\",\n",
|
||||
" \"/control/trajectory_follower/control_cmd\",\n",
|
||||
" \"void(vehicle_cmd_gate::VehicleCmdGate)(autoware_auto_control_msgs::msg::AckermannControlCommand)\",\n",
|
||||
" \"/control/command/control_cmd\",\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"# For development purposes only. Leave this at False.\n",
|
||||
"DEBUG = False\n",
|
||||
|
@ -181,6 +206,8 @@
|
|||
"for k, v in globals().copy().items():\n",
|
||||
" if not k.isupper():\n",
|
||||
" continue\n",
|
||||
" if isinstance(v, Iterable) and not isinstance(v, str):\n",
|
||||
" v = (\"\\n \" + (\" \" * 44)).join(list(map(str, v)))\n",
|
||||
" print(f\" {k:.<40s} := {v}\")"
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -235,7 +262,17 @@
|
|||
" \"callback_objects\", \"callback_symbols\", \"publish_instances\", \"callback_instances\", \"topics\"]\n",
|
||||
"\n",
|
||||
"# Help the IDE recognize those identifiers by assigning a dummy value to their name.\n",
|
||||
"nodes = publishers = subscriptions = timers = timer_node_links = subscription_objects = callback_objects = callback_symbols = publish_instances = callback_instances = topics = None\n",
|
||||
"nodes: Index = Index([])\n",
|
||||
"publishers: Index = Index([])\n",
|
||||
"subscriptions: Index = Index([])\n",
|
||||
"timers: Index = Index([])\n",
|
||||
"timer_node_links: Index = Index([])\n",
|
||||
"subscription_objects: Index = Index([])\n",
|
||||
"callback_objects: Index = Index([])\n",
|
||||
"callback_symbols: Index = Index([])\n",
|
||||
"publish_instances: Index = Index([])\n",
|
||||
"callback_instances: Index = Index([])\n",
|
||||
"topics: Index = Index([])\n",
|
||||
"\n",
|
||||
"for name in _tr_globals:\n",
|
||||
" globals()[name] = getattr(_tracing_context, name)\n",
|
||||
|
@ -246,6 +283,67 @@
|
|||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"##################################################\n",
|
||||
"# Split /tf into Artificial Topics\n",
|
||||
"##################################################\n",
|
||||
"# /tf is one ROS2 topic but carries multiple\n",
|
||||
"# different streams of information:\n",
|
||||
"# One for each publisher of the /tf topic.\n",
|
||||
"# We can separate the messages on /tf according\n",
|
||||
"# to those publishers.\n",
|
||||
"# Still, all subscribers to /tf are subscribed\n",
|
||||
"# to ALL of those split topics, so the\n",
|
||||
"# found dependencies are still a vast over-\n",
|
||||
"# approximation of the actual dataflow.\n",
|
||||
"##################################################\n",
|
||||
"\n",
|
||||
"tf_topic: TrTopic = topics.by_name[\"/tf\"]\n",
|
||||
"\n",
|
||||
"tf_split_topics = []\n",
|
||||
"for pub in tf_topic.publishers:\n",
|
||||
" pub: TrPublisher\n",
|
||||
" topic = TrTopic(f\"/tf[{pub.node.path}_{pub.id}]\", _tracing_context)\n",
|
||||
" pub.topic_name = topic.name\n",
|
||||
" for sub in tf_topic.subscriptions:\n",
|
||||
" sub.topic_names.append(topic.name)\n",
|
||||
"\n",
|
||||
" tf_split_topics.append(topic)\n",
|
||||
"\n",
|
||||
"print(\"Rebuilding subscription index\")\n",
|
||||
"subscriptions.rebuild()\n",
|
||||
"print(\"Rebuilding publisher index\")\n",
|
||||
"publishers.rebuild()\n",
|
||||
"print(\"Adding new topics and rebuilding topic index\")\n",
|
||||
"topics.append(tf_split_topics)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(\"Artificial TF topics (/tf[...]):\")\n",
|
||||
"for t in tf_split_topics:\n",
|
||||
" print(f\"{t.name:.<110s} | {len(t.publishers)} pubs, {sum(map(lambda p: len(p.instances), t.publishers))}\")\n",
|
||||
" for sub in t.subscriptions:\n",
|
||||
" print(f\" {sub.node.path:.<106s} | {len(sub.subscription_object.callback_object.callback_instances)} {len(sub.node.publishers)} {sum(map(lambda p: len(p.instances), sub.node.publishers))}\")\n",
|
||||
" #prefix = os.path.split(sub.node.path)[0]\n",
|
||||
" #for node in nodes:\n",
|
||||
" # if node.path.startswith(prefix) and node.path.removeprefix(prefix).count(\"/\") <= 1 and \"transform_listener_impl\" not in node.path:\n",
|
||||
" # print(f\" -> {' ' * (len(prefix) - 3)}{node.path.removeprefix(prefix)}\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
@ -257,19 +355,19 @@
|
|||
"\n",
|
||||
"for topic in sorted(topics, key=lambda t: t.name):\n",
|
||||
" topic: TrTopic\n",
|
||||
" print(f\"{topic.name:.<120s} | {sum(map(lambda p: len(p.instances), topic.publishers))}\")\n",
|
||||
" print(f\"{topic.name:.<130s} | {sum(map(lambda p: len(p.instances), topic.publishers)):>5d} msgs\")\n",
|
||||
"\n",
|
||||
"print(\"\\n[DEBUG] INPUT TOPICS\")\n",
|
||||
"for t in sorted(topics, key=lambda t: t.name):\n",
|
||||
" for f in E2E_INPUT_TOPIC_PATTERNS:\n",
|
||||
" if re.search(f, t.name):\n",
|
||||
" print(f\"--[DEBUG] {f:<30s}:{t.name:.<89s} | {sum(map(lambda p: len(p.instances), t.publishers))}\")\n",
|
||||
" print(f\"--[DEBUG] {f:<30s}:{t.name:.<89s} | {sum(map(lambda p: len(p.instances), t.publishers)):>5d} msgs\")\n",
|
||||
"\n",
|
||||
"print(\"\\n[DEBUG] OUTPUT TOPICS\")\n",
|
||||
"for t in sorted(topics, key=lambda t: t.name):\n",
|
||||
" for f in E2E_OUTPUT_TOPIC_PATTERNS:\n",
|
||||
" if re.search(f, t.name):\n",
|
||||
" print(f\"--[ENTKÄFERN] {f:<30s}:{t.name:.<89s} | {sum(map(lambda p: len(p.instances), t.publishers))}\")"
|
||||
" print(f\"--[DEBUG] {f:<30s}:{t.name:.<89s} | {sum(map(lambda p: len(p.instances), t.publishers)):>5d} msgs\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
@ -327,7 +425,7 @@
|
|||
"\n",
|
||||
"from latency_graph.latency_graph_plots import plot_latency_graph_full\n",
|
||||
"\n",
|
||||
"plot_latency_graph_full(lat_graph, _tracing_context, \"latency_graph_full\")"
|
||||
"plot_latency_graph_full(lat_graph, _tracing_context, os.path.join(OUT_PATH, \"latency_graph_full\"))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
@ -358,7 +456,7 @@
|
|||
"\n",
|
||||
"from latency_graph.latency_graph_plots import plot_latency_graph_overview\n",
|
||||
"\n",
|
||||
"plot_latency_graph_overview(lat_graph, DFG_EXCL_NODE_PATTERNS, DFG_INPUT_NODE_PATTERNS, DFG_OUTPUT_NODE_PATTERNS, DFG_MAX_HIER_LEVEL, \"latency_graph_overview\")"
|
||||
"plot_latency_graph_overview(lat_graph, DFG_EXCL_NODE_PATTERNS, DFG_INPUT_NODE_PATTERNS, DFG_OUTPUT_NODE_PATTERNS, DFG_MAX_HIER_LEVEL, os.path.join(OUT_PATH, \"latency_graph_overview\"))"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
|
@ -389,7 +487,7 @@
|
|||
"end_topics = [t for t in _tracing_context.topics if any(re.search(f, t.name) for f in E2E_OUTPUT_TOPIC_PATTERNS)]\n",
|
||||
"\n",
|
||||
"def _build_dep_trees():\n",
|
||||
" return build_dep_trees(end_topics, lat_graph, _tracing_context, E2E_EXCL_PATH_PATTERNS, E2E_TIME_LIMIT_S)\n",
|
||||
" return build_dep_trees(end_topics, lat_graph, _tracing_context, E2E_EXCL_PATH_PATTERNS, E2E_TIME_LIMIT_S, exact_path=E2E_EXACT_PATH)\n",
|
||||
"\n",
|
||||
"try:\n",
|
||||
" trees = cached(\"trees\", _build_dep_trees, [TR_PATH], not CACHING_ENABLED)\n",
|
||||
|
@ -425,21 +523,6 @@
|
|||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%skip_if_false DEBUG\n",
|
||||
"\n",
|
||||
"import pickle\n",
|
||||
"with open(\"trees.pkl\", \"rb\") as f:\n",
|
||||
" trees = pickle.load(f)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
@ -456,9 +539,7 @@
|
|||
"\n",
|
||||
"trees_paths = [e2e_paths_sorted_desc(tree, E2E_INPUT_TOPIC_PATTERNS) for tree in tqdm(trees, mininterval=10.0,\n",
|
||||
" desc=\"Extracting E2E paths\")]\n",
|
||||
"all_paths = [p for paths in trees_paths for p in paths]\n",
|
||||
"relevant_paths = [p for p in all_paths\n",
|
||||
" if any(map(lambda inst: re.search(\"^/sensing/.*?pointcloud\", owner(inst)), p))]\n"
|
||||
"all_paths = [p for paths in trees_paths for p in paths]"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
@ -477,7 +558,7 @@
|
|||
"# Group dataflows by DFG path\n",
|
||||
"##################################################\n",
|
||||
"\n",
|
||||
"cohorts = aggregate_e2e_paths(relevant_paths) #all_paths)\n",
|
||||
"cohorts = aggregate_e2e_paths(all_paths) #all_paths)\n",
|
||||
"cohort_pairs = [(k, v) for k, v in cohorts.items()]\n",
|
||||
"cohort_pairs.sort(key=lambda kv: len(kv[1]), reverse=True)\n",
|
||||
"\n",
|
||||
|
@ -490,7 +571,7 @@
|
|||
"out_df.to_csv(os.path.join(OUT_PATH, \"e2e.csv\"), sep=\"\\t\", index=False)\n",
|
||||
"\n",
|
||||
"df_print = out_df[['path', 'e2e_latency']].groupby(\"path\").agg(['count', 'mean', 'min', 'max']).reset_index()\n",
|
||||
"df_print['path'] = df_print['path'].apply(lambda path: \" -> \".join(filter(lambda part: part.startswith(\"/\"), path.split(\" -> \"))))\n",
|
||||
"#df_print['path'] = df_print['path'].apply(lambda path: \" -> \".join(filter(lambda part: part.startswith(\"/\"), path.split(\" -> \"))))\n",
|
||||
"df_print = df_print.sort_values((\"e2e_latency\", \"count\"), ascending=False)\n",
|
||||
"df_print.to_csv(os.path.join(OUT_PATH, \"e2e_overview.csv\"), sep=\"\\t\", index=False)\n",
|
||||
"df_print"
|
||||
|
@ -504,13 +585,11 @@
|
|||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%skip_if_false MANUAL_CACHE\n",
|
||||
"\n",
|
||||
"import pickle\n",
|
||||
"# with open(\"state.pkl\", \"wb\") as f:\n",
|
||||
"# pickle.dump((trees_paths, all_paths, lidar_paths, cohorts), f)\n",
|
||||
"with open(\"state.pkl\", \"rb\") as f:\n",
|
||||
" (trees_paths, all_paths, relevant_paths, cohorts) = pickle.load(f)"
|
||||
"# pickle.dump((trees_paths, all_paths, cohorts), f)\n",
|
||||
"with open(os.path.join(OUT_PATH, \"state.pkl\"), \"wb\") as f:\n",
|
||||
" pickle.dump((trees_paths, all_paths, cohorts), f)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
@ -526,8 +605,13 @@
|
|||
"# cannot-be-included patterns\n",
|
||||
"##################################################\n",
|
||||
"\n",
|
||||
"#for k in cohorts.keys():\n",
|
||||
"# print(\" \" + \"\\n-> \".join(k.split(\" -> \")))\n",
|
||||
"# print()\n",
|
||||
"# print()\n",
|
||||
"\n",
|
||||
"cohorts_filt = {k: v for k, v in cohorts.items()\n",
|
||||
" if not any(re.search(f, k) for f in E2E_EXCL_PATH_PATTERNS) and all(re.search(f, k) for f in E2E_INCL_PATH_PATTERNS)}\n",
|
||||
" if all(re.search(f.removeprefix(\"^\").removesuffix(\"$\"), k) for f in E2E_INCL_PATH_PATTERNS)}\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"print(len(cohorts), len(cohorts_filt))\n",
|
||||
|
@ -557,15 +641,15 @@
|
|||
"##################################################\n",
|
||||
"\n",
|
||||
"e2e_breakdowns = list(map(e2e_latency_breakdown, relevant_dataflows))\n",
|
||||
"filt = [(path, bdown) for (path, bdown) in zip(relevant_dataflows, e2e_breakdowns)\n",
|
||||
" if not any(True for item in bdown\n",
|
||||
" if item.type == \"idle\" and item.duration > item.location[1].callback_obj.owner.period * 1e-9)]\n",
|
||||
"#filt = [(path, bdown) for (path, bdown) in zip(relevant_dataflows, e2e_breakdowns)\n",
|
||||
"# if not any(True for item in bdown\n",
|
||||
"# if item.type == \"idle\" and item.duration > item.location[1].callback_obj.owner.period * 1e-9)]\n",
|
||||
"\n",
|
||||
"# Backup for debug purposes.\n",
|
||||
"lidar_cohort_orig = relevant_dataflows\n",
|
||||
"e2e_breakdowns_orig = e2e_breakdowns\n",
|
||||
"#relevant_dataflows_orig = relevant_dataflows\n",
|
||||
"#e2e_breakdowns_orig = e2e_breakdowns\n",
|
||||
"\n",
|
||||
"relevant_dataflows, e2e_breakdowns = zip(*filt)"
|
||||
"#relevant_dataflows, e2e_breakdowns = zip(*filt)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
@ -586,7 +670,7 @@
|
|||
"from message_tree.message_tree_algorithms import e2e_latency_breakdown\n",
|
||||
"\n",
|
||||
"conv_items = [i for p in e2e_breakdowns for i in p]\n",
|
||||
"with open(\"out/plot_e2es_path.txt\", \"w\") as f:\n",
|
||||
"with open(os.path.join(OUT_PATH, \"plot_e2es_path.txt\"), \"w\") as f:\n",
|
||||
" f.write(f\"Number of path instances: {len(relevant_dataflows)}\\n\")\n",
|
||||
" f.write( \" \" + \"\\n -> \".join(relevant_path.split(\" -> \")))\n",
|
||||
" f.write(\"\\n\")\n",
|
||||
|
@ -609,7 +693,7 @@
|
|||
" durations = [item.duration for item in items if item.type == type]\n",
|
||||
"\n",
|
||||
" df = pd.Series(durations)\n",
|
||||
" df.to_csv(f\"out/plot_e2es_{type}_portion.csv\", header=[f\"e2e_latency_{type}_portion_s\"], index=False)\n",
|
||||
" df.to_csv(os.path.join(OUT_PATH, f\"plot_e2es_{type}_portion.csv\"), header=[f\"e2e_latency_{type}_portion_s\"], index=False)\n",
|
||||
"\n",
|
||||
" ax.set_title(type)\n",
|
||||
" ax.hist(durations, bins=50)\n",
|
||||
|
@ -626,7 +710,7 @@
|
|||
"##################################################\n",
|
||||
"\n",
|
||||
"fig = e2e_breakdown_type_hist__(conv_items_unique)\n",
|
||||
"plt.savefig(\"out/plot_e2e_portions.png\")\n",
|
||||
"plt.savefig(os.path.join(OUT_PATH, \"plot_e2e_portions.png\"))\n",
|
||||
"\n",
|
||||
"None\n"
|
||||
],
|
||||
|
@ -649,7 +733,7 @@
|
|||
"e2es = [path[-1].timestamp - path[0].timestamp for path in relevant_dataflows]\n",
|
||||
"\n",
|
||||
"df = pd.Series(e2es)\n",
|
||||
"df.to_csv(\"out/plot_e2es.csv\", index=False, header=[\"e2e_latency_s\"])\n",
|
||||
"df.to_csv(os.path.join(OUT_PATH, \"plot_e2es.csv\"), index=False, header=[\"e2e_latency_s\"])\n",
|
||||
"\n",
|
||||
"plt.close(\"E2E histogram\")\n",
|
||||
"fig, ax = plt.subplots(num=\"E2E histogram\", dpi=300, figsize=(16, 9))\n",
|
||||
|
@ -661,7 +745,7 @@
|
|||
"ax.axvline(np.mean(e2es), c=\"red\", linewidth=2)\n",
|
||||
"_, max_ylim = ax.get_ylim()\n",
|
||||
"ax.text(np.mean(e2es) * 1.02, max_ylim * 0.98, 'Mean: {:.3f}s'.format(np.mean(e2es)))\n",
|
||||
"plt.savefig(\"out/plot_e2es.png\")\n",
|
||||
"plt.savefig(os.path.join(OUT_PATH, \"plot_e2es.png\"))\n",
|
||||
"None"
|
||||
],
|
||||
"metadata": {
|
||||
|
@ -709,17 +793,17 @@
|
|||
" add_label(vln, type)\n",
|
||||
" for i, x in zip(indices, xs):\n",
|
||||
" df_out = pd.Series(x)\n",
|
||||
" df_out.to_csv(f\"out/plot_e2es_violin_{i:02d}.csv\", index=False, header=[\"duration_s\"])\n",
|
||||
" df_out.to_csv(os.path.join(OUT_PATH, f\"plot_e2es_violin_{i:02d}.csv\"), index=False, header=[\"duration_s\"])\n",
|
||||
"ax.set_ylabel(\"Latency contribution [s]\")\n",
|
||||
"ax.set_xticks(range(len(labels)), labels, rotation=90)\n",
|
||||
"ax.legend(*zip(*legend_entries))\n",
|
||||
"plt.savefig(\"out/plot_e2es_violin.png\")\n",
|
||||
"plt.savefig(os.path.join(OUT_PATH, \"plot_e2es_violin.png\"))\n",
|
||||
"\n",
|
||||
"df_labels = pd.Series(labels)\n",
|
||||
"df_labels.to_csv(\"out/plot_e2es_violin_labels.csv\", index=False, header=[\"label\"])\n",
|
||||
"df_labels.to_csv(os.path.join(OUT_PATH, \"plot_e2es_violin_labels.csv\"), index=False, header=[\"label\"])\n",
|
||||
"\n",
|
||||
"df_types = pd.Series(types)\n",
|
||||
"df_types.to_csv(\"out/plot_e2es_violin_types.csv\", index=False, header=[\"type\"])\n",
|
||||
"df_types.to_csv(os.path.join(OUT_PATH, \"plot_e2es_violin_types.csv\"), index=False, header=[\"type\"])\n",
|
||||
"\n",
|
||||
"None"
|
||||
],
|
||||
|
@ -737,7 +821,7 @@
|
|||
" continue\n",
|
||||
" dur_ts_records = [(item.location[0].timestamp, item.duration) for item in concat_pc_items]\n",
|
||||
" df_dur_ts = pd.DataFrame(dur_ts_records, columns=(\"timestamp\", \"duration\"))\n",
|
||||
" df_dur_ts.to_csv(f\"dur_ts_{concat_pc_items[0].location[0].publisher.topic_name.replace('/', '__')}.csv\", index=False)"
|
||||
" df_dur_ts.to_csv(os.path.join(OUT_PATH, f\"dur_ts_{concat_pc_items[0].location[0].publisher.topic_name.replace('/', '__')}.csv\"), index=False)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
@ -754,7 +838,7 @@
|
|||
"\n",
|
||||
"records = [(lbl, x.mean(), x.std(), x.min(), x.max()) for x, lbl in zip(xs, lbls)]\n",
|
||||
"df_cpu = pd.DataFrame(records, columns=[\"callback\", \"mean\", \"std\", \"min\", \"max\"])\n",
|
||||
"df_cpu.to_csv(\"out/calc_times.csv\", index=False)"
|
||||
"df_cpu.to_csv(os.path.join(OUT_PATH, \"calc_times.csv\"), index=False)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
@ -784,33 +868,7 @@
|
|||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%%skip_if_false E2E_ENABLED\n",
|
||||
"%%skip_if_false DEBUG\n",
|
||||
"\n",
|
||||
"import pickle\n",
|
||||
"\n",
|
||||
"with open(\"trees.pkl\", \"wb\") as f:\n",
|
||||
" pickle.dump(trees, f)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ctx = relevant_paths[0][0]._c\n",
|
||||
"topics = ctx.topics\n",
|
||||
"\n",
|
||||
"topics_of_interest = [item.publisher.topic_name for item in relevant_dataflows[0] if isinstance(item, TrPublishInstance)]\n",
|
||||
"\n",
|
||||
"topic_records = []\n",
|
||||
"for t in topics_of_interest:\n",
|
||||
" topic_records.append((t, topics.by_name[t].subscriptions[0]))\n",
|
||||
"\n",
|
||||
"print(topic_records)"
|
||||
"print(\"Done.\")"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue