added count, beautified boxplot output

This commit is contained in:
Niklas Halle 2025-06-16 11:00:18 +00:00
parent b5b0f2f84b
commit 9bf91d654d
3 changed files with 71 additions and 43 deletions

View file

@ -1,16 +1,13 @@
import pandas as pd
import numpy as np
import argparse
import seaborn as sns
import matplotlib.pyplot as plt
def parse_arguments():
parser = argparse.ArgumentParser(description='Analyze chain data from CSV file.')
parser.add_argument('--input', '-i', required=True, help='Path to the input CSV file')
return parser.parse_args()
def main():
args = parse_arguments()
@ -28,49 +25,78 @@ def main():
# Group data by chain
chain_groups = df.groupby('chain')
# For each chain, create a plot with four boxplots (mean, std, min, max)
# For each chain, create a figure with five subplots for boxplots (mean, std, min, max, count)
for chain_name, chain_data in chain_groups:
# Create a figure for this chain
plt.figure(figsize=(12, 8))
fig, axs = plt.subplots(1, 5, figsize=(18, 6), constrained_layout=True)
# Normalize chain name for filename
chain_name_fs = str(chain_name).replace('--> /', '-').replace('/', '_').replace(' ', '')
# Create a DataFrame with the columns we want to plot
plot_data = pd.DataFrame({
'Mean': chain_data['mean'],
'Std': chain_data['std'],
'Min': chain_data['min'],
'Max': chain_data['max']
})
plot_data = chain_data[['mean', 'std', 'min', 'max', 'count']].copy()
plot_data.columns = ['Mean', 'Std', 'Min', 'Max', 'Count']
# Make all plots have the same color palette
palette = sns.color_palette("husl", 4)
# Add a distinct color for the 'Count' plot, as it is a different metric
colors = palette + ['lightcoral']
for idx, (col, color) in enumerate(zip(['Mean', 'Std', 'Min', 'Max', 'Count'], colors)):
ax = axs[idx]
# Create boxplots
ax = sns.boxplot(data=plot_data, palette='Set3')
sns.boxplot(data=plot_data[col], ax=ax, color=color, showfliers=True, width=0.4)
# Add individual data points
sns.stripplot(data=plot_data, color='black', alpha=0.5, size=4, jitter=True)
sns.swarmplot(data=plot_data[col], ax=ax, color='black', size=3, alpha=0.6)
# Set labels and title
plt.title(f'Statistics for Chain: {chain_name}\nAcross {len(chain_data)} Experiment Runs\n{experiment_name}', fontsize=14)
plt.ylabel('Latency (ms)', fontsize=12)
plt.xlabel('Statistic Type', fontsize=12)
ax.set_title(f'{col} Distribution', fontsize=14, fontweight='bold')
ax.set_xticks([]) # Remove x-ticks for clarity
ax.set_xlabel('') # No x-label needed
ax.set_ylabel('Latency (ms)' if col != 'Count' else 'Count', fontsize=12)
# Calculate statistics of the statistics
data_values = plot_data[col]
stats_text = (
f"Mean: {data_values.mean():.2f}\n"
f"Std: {data_values.std():.2f}\n"
f"Min: {data_values.min():.2f}\n"
f"Max: {data_values.max():.2f}"
)
# --- Place legend in the top right using axes fraction coordinates ---
ax.text(
0.95, 0.98, # axes fraction: 95% right, 98% up
stats_text,
transform=ax.transAxes,
verticalalignment='top',
horizontalalignment='right',
fontsize=10,
bbox=dict(facecolor='white', alpha=0.9, boxstyle='round,pad=0.3', edgecolor='gray')
)
# Add grid for better readability
plt.grid(axis='y', linestyle='--', alpha=0.7)
ax.grid(axis='y', linestyle='--', alpha=0.4)
# Tighten layout and save the figure
# Set the overall title for the figure
plt.suptitle(
f'Statistics for Chain: {chain_name}\nAcross {len(chain_data)} Experiment Runs - {experiment_name}',
fontsize=18, fontweight='bold'
)
# Save the figure with a filename that includes the chain name
plt.tight_layout()
output_file = args.input.replace('.csv', f'_chain_{chain_name_fs}_analysis.png')
plt.savefig(output_file, dpi=300)
plt.close()
# Also calculate and print summary statistics for this chain
# Print summary statistics for the chain
summary = chain_data.describe()
print(f"\nSummary for chain: {chain_name}")
print(summary[['mean', 'std', 'min', 'max']])
print(summary[['mean', 'std', 'min', 'max', 'count']])
print(f"\nAnalysis complete. Plots saved with base name: {args.input.replace('.csv', '_chain_*_analysis.png')}")
if __name__ == "__main__":
main()

View file

@ -51,7 +51,7 @@ def main(base_dir, name_filter):
pm.execute_notebook(
"./trace-analysis.ipynb",
os.path.join(current_artifact, "output", "trace-analysis.ipynb"),
log_output=True
log_output=False
)
except Exception as e:
LOGGER.exception(e)

View file

@ -683,6 +683,7 @@
" std_latency = np.std(e2e_latencies)\n",
" min_latency = np.min(e2e_latencies)\n",
" max_latency = np.max(e2e_latencies)\n",
" count_latencies = len(e2e_latencies)\n",
" ax.axvline(mean_latency, c=\"red\", linewidth=2)\n",
" _, max_ylim = ax.get_ylim()\n",
" # Create a multi-line string with all stats\n",
@ -690,7 +691,8 @@
" f\"Mean: {mean_latency:.2f} ms\\n\"\n",
" f\"Std: {std_latency:.2f} ms\\n\"\n",
" f\"Min: {min_latency:.2f} ms\\n\"\n",
" f\"Max: {max_latency:.2f} ms\"\n",
" f\"Max: {max_latency:.2f} ms\\n\"\n",
" f\"Count: {count_latencies}\"\n",
" )\n",
" # Place text near top right of plot\n",
" ax.text(\n",
@ -703,10 +705,10 @@
" bbox=dict(facecolor='white', alpha=0.7, boxstyle='round,pad=0.3')\n",
" )\n",
" plt.savefig(os.path.join(OUT_PATH, f\"plot_e2es_{name}.png\"))\n",
" result_strings.append(f\"Chain {topics[0]} --> {topics[-1]} E2E stats: Mean: {mean_latency:.2f} ms, Std: {std_latency:.2f} ms, Min: {min_latency:.2f} ms, Max: {max_latency:.2f} ms\")\n",
" result_strings.append(f\"Chain {topics[0]} --> {topics[-1]} E2E stats: Mean: {mean_latency:.2f} ms, Std: {std_latency:.2f} ms, Min: {min_latency:.2f} ms, Max: {max_latency:.2f} ms, Count: {count_latencies}\")\n",
" # also do it as csv of order: exepriment_name, chain, mean, std, min, max\n",
" result_strings_csv.append(\n",
" f\"{EXPERIMENT_NAME},{topics[0]} --> {topics[-1]},{mean_latency:.2f},{std_latency:.2f},{min_latency:.2f},{max_latency:.2f}\"\n",
" f\"{EXPERIMENT_NAME},{topics[0]} --> {topics[-1]},{mean_latency:.2f},{std_latency:.2f},{min_latency:.2f},{max_latency:.2f},{count_latencies}\"\n",
" )\n",
"\n",
" ##################################################\n",