filter exterme outliers before plotting the boxplots

This commit is contained in:
Niklas Halle 2025-06-23 07:00:25 +00:00
parent 9bf91d654d
commit 50d5dac71c

View file

@ -44,11 +44,18 @@ def main():
for idx, (col, color) in enumerate(zip(['Mean', 'Std', 'Min', 'Max', 'Count'], colors)): for idx, (col, color) in enumerate(zip(['Mean', 'Std', 'Min', 'Max', 'Count'], colors)):
ax = axs[idx] ax = axs[idx]
# Prepare the data for the current column
current_plot_data = plot_data[col].dropna()
# Remove outliers for better visualization
filtered_plot_data = current_plot_data[current_plot_data.between(current_plot_data.quantile(.03), current_plot_data.quantile(0.97))]
filtered_count = current_plot_data.count() - filtered_plot_data.count()
# Create boxplots # Create boxplots
sns.boxplot(data=plot_data[col], ax=ax, color=color, showfliers=True, width=0.4) sns.boxplot(data=filtered_plot_data, ax=ax, color=color, showfliers=False, width=0.4) # type: ignore
# Add individual data points # Add individual data points
sns.swarmplot(data=plot_data[col], ax=ax, color='black', size=3, alpha=0.6) sns.swarmplot(data=filtered_plot_data, ax=ax, color='black', size=3, alpha=0.6) # type: ignore
# Set labels and title # Set labels and title
ax.set_title(f'{col} Distribution', fontsize=14, fontweight='bold') ax.set_title(f'{col} Distribution', fontsize=14, fontweight='bold')
@ -56,13 +63,22 @@ def main():
ax.set_xlabel('') # No x-label needed ax.set_xlabel('') # No x-label needed
ax.set_ylabel('Latency (ms)' if col != 'Count' else 'Count', fontsize=12) ax.set_ylabel('Latency (ms)' if col != 'Count' else 'Count', fontsize=12)
# Calculate statistics of the statistics # Calculate statistics of the statistics - here based on the original data with outliers!
data_values = plot_data[col] data_values = plot_data[col]
first_line_length = len(f"Mean: {data_values.mean():.2f}")
second_line_length = len(f"Std: {data_values.std():.2f}")
third_line_length = len(f"Min: {data_values.min():.2f}")
fourth_line_length = len(f"Max: {data_values.max():.2f}")
fivth_line_length = len(f"Filtered: {filtered_count}")
max_length = max(first_line_length, second_line_length, third_line_length, fourth_line_length, fivth_line_length) + 1
# Prepare the text for the legend
stats_text = ( stats_text = (
f"Mean: {data_values.mean():.2f}\n" f"Mean:{' ' * (max_length - first_line_length)}{data_values.mean():.2f}\n"
f"Std: {data_values.std():.2f}\n" f"Std:{' ' * (max_length - second_line_length)}{data_values.std():.2f}\n"
f"Min: {data_values.min():.2f}\n" f"Min:{' ' * (max_length - third_line_length)}{data_values.min():.2f}\n"
f"Max: {data_values.max():.2f}" f"Max:{' ' * (max_length - fourth_line_length)}{data_values.max():.2f}\n"
f"Filtered:{' ' * (max_length - fivth_line_length)}{filtered_count}"
) )
# --- Place legend in the top right using axes fraction coordinates --- # --- Place legend in the top right using axes fraction coordinates ---
@ -73,6 +89,7 @@ def main():
verticalalignment='top', verticalalignment='top',
horizontalalignment='right', horizontalalignment='right',
fontsize=10, fontsize=10,
fontfamily='monospace',
bbox=dict(facecolor='white', alpha=0.9, boxstyle='round,pad=0.3', edgecolor='gray') bbox=dict(facecolor='white', alpha=0.9, boxstyle='round,pad=0.3', edgecolor='gray')
) )
@ -86,7 +103,6 @@ def main():
) )
# Save the figure with a filename that includes the chain name # Save the figure with a filename that includes the chain name
plt.tight_layout()
output_file = args.input.replace('.csv', f'_chain_{chain_name_fs}_analysis.png') output_file = args.input.replace('.csv', f'_chain_{chain_name_fs}_analysis.png')
plt.savefig(output_file, dpi=300) plt.savefig(output_file, dpi=300)
plt.close() plt.close()