basic refactor

This commit is contained in:
Niklas Halle 2025-04-01 16:03:45 +02:00 committed by Niklas Halle
parent a2741afc9a
commit 91c2a42d6b
19 changed files with 1473 additions and 1390 deletions

View file

@ -1,36 +1,34 @@
cmake_minimum_required(VERSION 3.5) cmake_minimum_required(VERSION 3.8)
project(priority_executor) project(priority_executor VERSION 0.1.0)
# Default to C99 # Set C++ standards
if(NOT CMAKE_C_STANDARD) set(CMAKE_CXX_STANDARD 17)
set(CMAKE_C_STANDARD 99) set(CMAKE_CXX_STANDARD_REQUIRED ON)
endif() set(CMAKE_CXX_EXTENSIONS OFF)
# Default to C++14
if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)
endif()
# Compiler options
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang") if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic) add_compile_options(-Wall -Wextra -Wpedantic)
endif() endif()
# find dependencies # Find dependencies
find_package(ament_cmake REQUIRED) find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED) find_package(rclcpp REQUIRED)
find_package(rcl REQUIRED) find_package(rcl REQUIRED)
find_package(rmw REQUIRED)
find_package(std_msgs REQUIRED) find_package(std_msgs REQUIRED)
find_package(std_srvs REQUIRED) find_package(std_srvs REQUIRED)
find_package(simple_timer REQUIRED) find_package(simple_timer REQUIRED)
add_library(priority_executor src/priority_executor.cpp src/priority_memory_strategy.cpp) # Library targets
add_library(priority_executor
src/priority_executor.cpp
src/priority_memory_strategy.cpp
)
target_include_directories(priority_executor PUBLIC target_include_directories(priority_executor PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include> $<INSTALL_INTERFACE:include>
) )
# target_link_libraries(priority_executor
# simple_timer
# )
ament_target_dependencies(priority_executor ament_target_dependencies(priority_executor
rmw rmw
rclcpp rclcpp
@ -38,7 +36,10 @@ ament_target_dependencies(priority_executor
simple_timer simple_timer
) )
add_library(multithread_priority_executor src/multithread_priority_executor.cpp src/priority_memory_strategy.cpp) add_library(multithread_priority_executor
src/multithread_priority_executor.cpp
src/priority_memory_strategy.cpp
)
target_include_directories(multithread_priority_executor PUBLIC target_include_directories(multithread_priority_executor PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include> $<INSTALL_INTERFACE:include>
@ -50,7 +51,9 @@ ament_target_dependencies(multithread_priority_executor
simple_timer simple_timer
) )
add_library(default_executor src/default_executor.cpp) add_library(default_executor
src/default_executor.cpp
)
target_include_directories(default_executor PUBLIC target_include_directories(default_executor PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include> $<INSTALL_INTERFACE:include>
@ -62,48 +65,54 @@ ament_target_dependencies(default_executor
simple_timer simple_timer
) )
add_executable(usage_example src/usage_example.cpp) # Example executable
add_executable(usage_example
src/usage_example.cpp
)
target_include_directories(usage_example PUBLIC target_include_directories(usage_example PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>) $<INSTALL_INTERFACE:include>
)
target_link_libraries(usage_example target_link_libraries(usage_example
priority_executor priority_executor
multithread_priority_executor
default_executor
) )
ament_target_dependencies(usage_example ament_target_dependencies(usage_example
rclcpp rclcpp
std_msgs std_msgs
std_srvs std_srvs
simple_timer
) )
# Testing
if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
ament_lint_auto_find_test_dependencies()
endif()
# Installation
install( install(
DIRECTORY include/ DIRECTORY include/
DESTINATION include DESTINATION include
) )
install(TARGETS usage_example install(
DESTINATION lib/${PROJECT_NAME} TARGETS priority_executor multithread_priority_executor default_executor
) EXPORT export_${PROJECT_NAME}
install(TARGETS priority_executor multithread_priority_executor default_executor
ARCHIVE DESTINATION lib ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib LIBRARY DESTINATION lib
RUNTIME DESTINATION bin RUNTIME DESTINATION bin
INCLUDES DESTINATION include
) )
if(BUILD_TESTING) install(
find_package(ament_lint_auto REQUIRED) TARGETS usage_example
# the following line skips the linter which checks for copyrights RUNTIME DESTINATION lib/${PROJECT_NAME}
# uncomment the line when a copyright and license is not present in all source files )
#set(ament_cmake_copyright_FOUND TRUE)
# the following line skips cpplint (only works in a git repo)
# uncomment the line when this package is not in a git repo
#set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()
endif()
# Export and package configuration
ament_export_include_directories(include) ament_export_include_directories(include)
ament_export_libraries(priority_executor) ament_export_targets(export_${PROJECT_NAME} HAS_LIBRARY_TARGET)
ament_export_libraries(multithread_priority_executor) ament_export_dependencies(rclcpp rcl rmw simple_timer)
ament_export_libraries(default_executor)
ament_export_dependencies(rclcpp rcl simple_timer)
ament_package() ament_package()

View file

@ -12,15 +12,16 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#ifndef RTIS_DEFAULT_EXECUTOR #ifndef PRIORITY_EXECUTOR__DEFAULT_EXECUTOR_HPP_
#define RTIS_DEFAULT_EXECUTOR #define PRIORITY_EXECUTOR__DEFAULT_EXECUTOR_HPP_
#include <rmw/rmw.h> #include <rmw/rmw.h>
#include <set>
#include <memory>
#include <cassert> #include <cassert>
#include <cstdlib> #include <cstdlib>
#include <memory> #include <unordered_map>
#include <set>
#include "rclcpp/executor.hpp" #include "rclcpp/executor.hpp"
#include "rclcpp/macros.hpp" #include "rclcpp/macros.hpp"
@ -28,49 +29,57 @@
#include "rclcpp/detail/mutex_two_priorities.hpp" #include "rclcpp/detail/mutex_two_priorities.hpp"
#include "simple_timer/rt-sched.hpp" #include "simple_timer/rt-sched.hpp"
class RTISTimed namespace priority_executor {
{
class RTISTimed {
public: public:
node_time_logger logger_; node_time_logger logger_;
}; };
class ROSDefaultMultithreadedExecutor : public rclcpp::Executor, public RTISTimed class ROSDefaultMultithreadedExecutor : public rclcpp::Executor, public RTISTimed {
{
public: public:
RCLCPP_SMART_PTR_DEFINITIONS(ROSDefaultMultithreadedExecutor)
RCLCPP_PUBLIC RCLCPP_PUBLIC
explicit ROSDefaultMultithreadedExecutor( explicit ROSDefaultMultithreadedExecutor(
const rclcpp::ExecutorOptions &options = rclcpp::ExecutorOptions(), int number_of_threads = 2, std::chrono::nanoseconds next_exec_timeout = std::chrono::nanoseconds(-1)); rclcpp::ExecutorOptions const &options = rclcpp::ExecutorOptions(),
int number_of_threads = 2,
std::chrono::nanoseconds next_exec_timeout = std::chrono::nanoseconds(-1));
RCLCPP_PUBLIC size_t get_number_of_threads(); RCLCPP_PUBLIC size_t get_number_of_threads();
RCLCPP_PUBLIC void spin() override; RCLCPP_PUBLIC void spin() override;
bool get_next_executable(rclcpp::AnyExecutable &any_executable, std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1));
bool get_next_executable(rclcpp::AnyExecutable& any_executable,
std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1));
protected: protected:
RCLCPP_PUBLIC void run(size_t thread_number); RCLCPP_PUBLIC void run(size_t thread_number);
private: private:
RCLCPP_DISABLE_COPY(ROSDefaultMultithreadedExecutor)
size_t number_of_threads_; size_t number_of_threads_;
std::set<rclcpp::TimerBase::SharedPtr> scheduled_timers_; std::set<rclcpp::TimerBase::SharedPtr> scheduled_timers_;
static std::unordered_map<ROSDefaultMultithreadedExecutor *, std::chrono::nanoseconds next_exec_timeout_{std::chrono::nanoseconds(-1)};
static std::unordered_map<ROSDefaultMultithreadedExecutor*,
std::shared_ptr<rclcpp::detail::MutexTwoPriorities>> std::shared_ptr<rclcpp::detail::MutexTwoPriorities>>
wait_mutex_set_; wait_mutex_set_;
static std::mutex shared_wait_mutex_; static std::mutex shared_wait_mutex_;
std::chrono::nanoseconds next_exec_timeout_ = std::chrono::nanoseconds(-1);
}; };
/// Single-threaded executor implementation. /// Single-threaded executor implementation.
/** /**
* This is the default executor created by rclcpp::spin. * This is the default executor created by rclcpp::spin.
*/ */
class ROSDefaultExecutor : public rclcpp::Executor, public RTISTimed class ROSDefaultExecutor : public rclcpp::Executor, public RTISTimed {
{
public: public:
RCLCPP_SMART_PTR_DEFINITIONS(ROSDefaultExecutor) RCLCPP_SMART_PTR_DEFINITIONS(ROSDefaultExecutor)
/// Default constructor. See the default constructor for Executor. /// Default constructor. See the default constructor for Executor.
RCLCPP_PUBLIC RCLCPP_PUBLIC
explicit ROSDefaultExecutor( explicit ROSDefaultExecutor(
const rclcpp::ExecutorOptions &options = rclcpp::ExecutorOptions()); rclcpp::ExecutorOptions const &options = rclcpp::ExecutorOptions());
/// Default destructor. /// Default destructor.
RCLCPP_PUBLIC RCLCPP_PUBLIC
@ -85,16 +94,18 @@ public:
* \throws std::runtime_error when spin() called while already spinning * \throws std::runtime_error when spin() called while already spinning
*/ */
RCLCPP_PUBLIC RCLCPP_PUBLIC
void void spin() override;
spin() override;
bool get_next_executable(rclcpp::AnyExecutable &any_executable, std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1)); bool get_next_executable(rclcpp::AnyExecutable& any_executable,
std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1));
RCLCPP_PUBLIC RCLCPP_PUBLIC
void void wait_for_work(std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1));
wait_for_work(std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1));
private: private:
RCLCPP_DISABLE_COPY(ROSDefaultExecutor) RCLCPP_DISABLE_COPY(ROSDefaultExecutor)
}; };
#endif // RCLCPP__EXECUTORS__SINGLE_THREADED_EXECUTOR_HPP_ } // namespace priority_executor
#endif // PRIORITY_EXECUTOR__DEFAULT_EXECUTOR_HPP_

View file

@ -1,34 +1,56 @@
#ifndef RTIS_MULTITHREAD_EXECUTOR #ifndef PRIORITY_EXECUTOR__MULTITHREAD_PRIORITY_EXECUTOR_HPP_
#define RTIS_MULTITHREAD_EXECUTOR #define PRIORITY_EXECUTOR__MULTITHREAD_PRIORITY_EXECUTOR_HPP_
#include <priority_executor/priority_executor.hpp>
#include "rclcpp/detail/mutex_two_priorities.hpp"
#include <set> #include <set>
#include <mutex>
#include <chrono>
#include <memory>
#include <thread>
#include <unordered_map>
namespace timed_executor #include "priority_executor/default_executor.hpp"
{ #include "priority_executor/priority_executor.hpp"
class MultithreadTimedExecutor : public TimedExecutor
{ #include "rclcpp/executor.hpp"
public: #include "rclcpp/macros.hpp"
#include "rclcpp/memory_strategies.hpp"
#include "rclcpp/node.hpp"
#include "rclcpp/rate.hpp"
#include "rclcpp/utilities.hpp"
#include "rclcpp/visibility_control.hpp"
namespace priority_executor {
class MultithreadTimedExecutor : public TimedExecutor {
public:
RCLCPP_PUBLIC RCLCPP_PUBLIC
explicit MultithreadTimedExecutor( explicit MultithreadTimedExecutor(
const rclcpp::ExecutorOptions &options = rclcpp::ExecutorOptions(), std::string name = "unnamed executor", int number_of_threads = 2, std::chrono::nanoseconds next_exec_timeout = std::chrono::nanoseconds(-1)); rclcpp::ExecutorOptions const &options = rclcpp::ExecutorOptions(),
std::string const &name = "unnamed executor",
int number_of_threads = 2,
std::chrono::nanoseconds next_exec_timeout = std::chrono::nanoseconds(-1));
RCLCPP_PUBLIC
virtual ~MultithreadTimedExecutor() = default;
RCLCPP_PUBLIC size_t get_number_of_threads(); RCLCPP_PUBLIC size_t get_number_of_threads();
RCLCPP_PUBLIC void spin() override; RCLCPP_PUBLIC void spin() override;
protected: protected:
RCLCPP_PUBLIC void run(size_t thread_number); RCLCPP_PUBLIC void run(size_t _thread_number);
private: private:
size_t number_of_threads_;
std::set<rclcpp::TimerBase::SharedPtr> scheduled_timers_; std::set<rclcpp::TimerBase::SharedPtr> scheduled_timers_;
static std::unordered_map<MultithreadTimedExecutor *, size_t number_of_threads_;
std::chrono::nanoseconds next_exec_timeout_ = std::chrono::nanoseconds(-1);
node_time_logger logger_;
static std::unordered_map<MultithreadTimedExecutor*,
std::shared_ptr<rclcpp::detail::MutexTwoPriorities>> std::shared_ptr<rclcpp::detail::MutexTwoPriorities>>
wait_mutex_set_; wait_mutex_set_;
static std::mutex shared_wait_mutex_; static std::mutex shared_wait_mutex_;
std::chrono::nanoseconds next_exec_timeout_ = std::chrono::nanoseconds(-1); };
};
}
#endif } // namespace priority_executor
#endif // PRIORITY_EXECUTOR__MULTITHREAD_PRIORITY_EXECUTOR_HPP_

View file

@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#ifndef RTIS_TIMED_EXECUTOR #ifndef PRIORITY_EXECUTOR__PRIORITY_EXECUTOR_HPP_
#define RTIS_TIMED_EXECUTOR #define PRIORITY_EXECUTOR__PRIORITY_EXECUTOR_HPP_
#include <rmw/rmw.h> #include <rmw/rmw.h>
@ -24,24 +24,25 @@
#include "rclcpp/executor.hpp" #include "rclcpp/executor.hpp"
#include "rclcpp/macros.hpp" #include "rclcpp/macros.hpp"
#include "rclcpp/visibility_control.hpp" #include "rclcpp/visibility_control.hpp"
#include "priority_executor/priority_memory_strategy.hpp"
#include <priority_executor/default_executor.hpp>
namespace timed_executor
{
/// Single-threaded executor implementation. #include "priority_executor/priority_memory_strategy.hpp"
/** #include "priority_executor/default_executor.hpp"
namespace priority_executor {
/// Single-threaded executor implementation.
/**
* This is the default executor created by rclcpp::spin. * This is the default executor created by rclcpp::spin.
*/ */
class TimedExecutor : public rclcpp::Executor, public RTISTimed class TimedExecutor : public rclcpp::Executor, public RTISTimed {
{ public:
public:
RCLCPP_SMART_PTR_DEFINITIONS(TimedExecutor) RCLCPP_SMART_PTR_DEFINITIONS(TimedExecutor)
/// Default constructor. See the default constructor for Executor. /// Default constructor. See the default constructor for Executor.
RCLCPP_PUBLIC RCLCPP_PUBLIC
explicit TimedExecutor( explicit TimedExecutor(
const rclcpp::ExecutorOptions &options = rclcpp::ExecutorOptions(), std::string name = "unnamed executor"); rclcpp::ExecutorOptions const &options = rclcpp::ExecutorOptions(),
std::string name = "unnamed executor");
/// Default destructor. /// Default destructor.
RCLCPP_PUBLIC RCLCPP_PUBLIC
@ -56,28 +57,25 @@ namespace timed_executor
* \throws std::runtime_error when spin() called while already spinning * \throws std::runtime_error when spin() called while already spinning
*/ */
RCLCPP_PUBLIC RCLCPP_PUBLIC
void void spin() override;
spin() override;
std::string name; std::string name;
void set_use_priorities(bool use_prio); void set_use_priorities(bool use_prio);
std::shared_ptr<PriorityMemoryStrategy<>> prio_memory_strategy_ = nullptr; std::shared_ptr<PriorityMemoryStrategy<>> prio_memory_strategy_{nullptr};
protected: protected:
bool bool get_next_executable(rclcpp::AnyExecutable& any_executable,
get_next_executable(rclcpp::AnyExecutable &any_executable, std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1)); std::chrono::nanoseconds timeout = std::chrono::nanoseconds(-1));
private: private:
RCLCPP_DISABLE_COPY(TimedExecutor) RCLCPP_DISABLE_COPY(TimedExecutor)
void
wait_for_work(std::chrono::nanoseconds timeout);
bool void wait_for_work(std::chrono::nanoseconds timeout);
get_next_ready_executable(rclcpp::AnyExecutable &any_executable); bool get_next_ready_executable(rclcpp::AnyExecutable& any_executable);
bool use_priorities = true; bool use_priorities{true};
}; };
} // namespace timed_executor } // namespace priority_executor
#endif // RCLCPP__EXECUTORS__SINGLE_THREADED_EXECUTOR_HPP_ #endif // PRIORITY_EXECUTOR__PRIORITY_EXECUTOR_HPP_

View file

@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#ifndef RTIS_PRIORITY_STRATEGY #ifndef PRIORITY_EXECUTOR__PRIORITY_MEMORY_STRATEGY_HPP_
#define RTIS_PRIORITY_STRATEGY #define PRIORITY_EXECUTOR__PRIORITY_MEMORY_STRATEGY_HPP_
#include <cstdint> #include <cstdint>
#include <deque> #include <deque>
@ -37,8 +37,9 @@
* based on the number of entities that come through. * based on the number of entities that come through.
*/ */
enum ExecutableType namespace priority_executor {
{
enum class ExecutableType {
SUBSCRIPTION, SUBSCRIPTION,
SERVICE, SERVICE,
CLIENT, CLIENT,
@ -46,17 +47,35 @@ enum ExecutableType
WAITABLE WAITABLE
}; };
enum ExecutableScheduleType std::ostream& operator<<(std::ostream& os, const ExecutableType& obj);
{
enum class ExecutableScheduleType {
DEADLINE = 0, DEADLINE = 0,
CHAIN_AWARE_PRIORITY, CHAIN_AWARE_PRIORITY,
CHAIN_INDEPENDENT_PRIORITY, // not used here CHAIN_INDEPENDENT_PRIORITY, // not used here
DEFAULT, // not used here DEFAULT, // not used here
}; };
class PriorityExecutable std::ostream& operator<<(std::ostream& os, const ExecutableScheduleType& obj);
{
class PriorityExecutable {
public: public:
static size_t num_executables;
explicit PriorityExecutable(
std::shared_ptr<const void> h,
int p,
ExecutableType t,
ExecutableScheduleType sched_type = ExecutableScheduleType::CHAIN_INDEPENDENT_PRIORITY);
PriorityExecutable();
void dont_run();
void allow_run();
void increment_counter();
bool operator==(PriorityExecutable const &other) const;
friend std::ostream& operator<<(std::ostream& os, PriorityExecutable const &pe);
std::shared_ptr<const void> handle; std::shared_ptr<const void> handle;
ExecutableType type; ExecutableType type;
bool can_be_run = false; bool can_be_run = false;
@ -68,339 +87,99 @@ public:
bool is_first_in_chain = false; bool is_first_in_chain = false;
bool is_last_in_chain = false; bool is_last_in_chain = false;
// chain aware deadlines std::deque<uint64_t>* deadlines = nullptr; // chain aware deadlines
std::deque<uint64_t> *deadlines = nullptr;
std::shared_ptr<rclcpp::TimerBase> timer_handle; std::shared_ptr<rclcpp::TimerBase> timer_handle;
// just used for logging int chain_id = 0; // just used for logging
int chain_id = 0; int counter = 0; // chain aware priority
// chain aware priority
int counter = 0;
PriorityExecutable(
std::shared_ptr<const void> h, int p, ExecutableType t,
ExecutableScheduleType sched_type = CHAIN_INDEPENDENT_PRIORITY);
void dont_run();
void allow_run();
PriorityExecutable();
void increment_counter();
bool operator==(const PriorityExecutable &other) const;
static size_t num_executables;
int executable_id = 0; int executable_id = 0;
std::string name = ""; std::string name = "";
// stream operator for debug
friend std::ostream &operator<<(std::ostream &os,
const PriorityExecutable &pe)
{
os << "sched_type: " << pe.sched_type << ", ";
if (pe.sched_type == DEADLINE)
{
os << "period: " << pe.period << ", ";
}
os << "priority: " << pe.priority << ", ";
os << "executable_id: " << pe.executable_id << ", ";
os << "chain_id: " << pe.chain_id << ", ";
os << "is_first_in_chain: " << pe.is_first_in_chain << ", ";
os << "is_last_in_chain: " << pe.is_last_in_chain << ", ";
return os;
}
}; };
class PriorityExecutableComparator class PriorityExecutableComparator {
{
public: public:
bool operator()(const PriorityExecutable *p1, const PriorityExecutable *p2); bool operator()(PriorityExecutable const *p1, PriorityExecutable const *p2) const;
}; };
template <typename Alloc = std::allocator<void>> template <typename Alloc = std::allocator<void>>
class PriorityMemoryStrategy : public rclcpp::memory_strategy::MemoryStrategy class PriorityMemoryStrategy : public rclcpp::memory_strategy::MemoryStrategy {
{
public: public:
RCLCPP_SMART_PTR_DEFINITIONS(PriorityMemoryStrategy<Alloc>) RCLCPP_SMART_PTR_DEFINITIONS(PriorityMemoryStrategy<Alloc>)
using VoidAllocTraits = using VoidAllocTraits = typename rclcpp::allocator::AllocRebind<void*, Alloc>;
typename rclcpp::allocator::AllocRebind<void *, Alloc>;
using VoidAlloc = typename VoidAllocTraits::allocator_type; using VoidAlloc = typename VoidAllocTraits::allocator_type;
explicit PriorityMemoryStrategy(std::shared_ptr<Alloc> allocator) explicit PriorityMemoryStrategy(std::shared_ptr<Alloc> allocator);
{ PriorityMemoryStrategy();
allocator_ = std::make_shared<VoidAlloc>(*allocator.get());
logger_ = create_logger();
}
PriorityMemoryStrategy()
{
allocator_ = std::make_shared<VoidAlloc>();
logger_ = create_logger();
}
node_time_logger logger_; node_time_logger logger_;
void // Override methods
add_guard_condition(const rcl_guard_condition_t *guard_condition) override; void add_guard_condition(const rcl_guard_condition_t* guard_condition) override;
void remove_guard_condition(const rcl_guard_condition_t* guard_condition) override;
void
remove_guard_condition(const rcl_guard_condition_t *guard_condition) override;
void clear_handles() override; void clear_handles() override;
void remove_null_handles(rcl_wait_set_t* wait_set) override;
bool collect_entities(const WeakNodeList& weak_nodes) override;
void add_waitable_handle(const rclcpp::Waitable::SharedPtr& waitable) override;
bool add_handles_to_wait_set(rcl_wait_set_t* wait_set) override;
void remove_null_handles(rcl_wait_set_t *wait_set) override; // Class-specific methods
void get_next_executable(rclcpp::AnyExecutable& any_exec, const WeakNodeList& weak_nodes);
bool collect_entities(const WeakNodeList &weak_nodes) override;
void
add_waitable_handle(const rclcpp::Waitable::SharedPtr &waitable) override;
bool add_handles_to_wait_set(rcl_wait_set_t *wait_set) override;
void get_next_executable(rclcpp::AnyExecutable &any_exec,
const WeakNodeList &weak_nodes);
/**
* thread-id is used for logging. if -1, then don't log the thread id
*/
void post_execute(rclcpp::AnyExecutable any_exec, int thread_id = -1); void post_execute(rclcpp::AnyExecutable any_exec, int thread_id = -1);
void get_next_subscription(rclcpp::AnyExecutable &any_exec, // Override virtual methods
const WeakNodeList &weak_nodes) override; void get_next_subscription(rclcpp::AnyExecutable& any_exec, const WeakNodeList& weak_nodes) override;
void get_next_service(rclcpp::AnyExecutable& any_exec, const WeakNodeList& weak_nodes) override;
void get_next_client(rclcpp::AnyExecutable& any_exec, const WeakNodeList& weak_nodes) override;
void get_next_timer(rclcpp::AnyExecutable& any_exec, const WeakNodeList& weak_nodes) override;
void get_next_waitable(rclcpp::AnyExecutable& any_exec, const WeakNodeList& weak_nodes) override;
void get_next_service(rclcpp::AnyExecutable &any_exec, // Priority handling methods
const WeakNodeList &weak_nodes) override; std::shared_ptr<PriorityExecutable> get_priority_settings(std::shared_ptr<const void> executable);
rcl_allocator_t get_allocator() override;
void get_next_client(rclcpp::AnyExecutable &any_exec, // Counter methods
const WeakNodeList &weak_nodes) override; size_t number_of_ready_subscriptions() const override;
size_t number_of_ready_services() const override;
size_t number_of_ready_events() const override;
size_t number_of_ready_clients() const override;
size_t number_of_guard_conditions() const override;
size_t number_of_ready_timers() const override;
size_t number_of_waitables() const override;
void get_next_timer(rclcpp::AnyExecutable &any_exec, // Executable priority methods
const WeakNodeList &weak_nodes) override; void set_executable_priority(std::shared_ptr<const void> handle, int priority, ExecutableType t);
void set_executable_priority(std::shared_ptr<const void> handle, int priority, ExecutableType t,
void get_next_waitable(rclcpp::AnyExecutable &any_exec, ExecutableScheduleType sc, int chain_index);
const WeakNodeList &weak_nodes) override; void set_executable_deadline(std::shared_ptr<const void> handle, int period, ExecutableType t,
int chain_id = 0, std::string name = "");
std::shared_ptr<PriorityExecutable> int get_priority(std::shared_ptr<const void> executable);
get_priority_settings(std::shared_ptr<const void> executable) void set_first_in_chain(std::shared_ptr<const void> exec_handle);
{ void set_last_in_chain(std::shared_ptr<const void> exec_handle);
auto search = priority_map.find(executable); void assign_deadlines_queue(std::shared_ptr<const void> exec_handle, std::deque<uint64_t>* deadlines);
if (search != priority_map.end()) std::shared_ptr<std::deque<uint64_t>> get_chain_deadlines(int chain_id);
{
return search->second;
}
else
{
return nullptr;
}
}
rcl_allocator_t get_allocator() override
{
return rclcpp::allocator::get_rcl_allocator<void *, VoidAlloc>(
*allocator_.get());
}
size_t number_of_ready_subscriptions() const override
{
size_t number_of_subscriptions = subscription_handles_.size();
// std::cout << "ready_raw: " << number_of_subscriptions << std::endl;
for (auto waitable : waitable_handles_)
{
number_of_subscriptions += waitable->get_number_of_ready_subscriptions();
}
return number_of_subscriptions;
}
size_t number_of_ready_services() const override
{
size_t number_of_services = service_handles_.size();
for (auto waitable : waitable_handles_)
{
number_of_services += waitable->get_number_of_ready_services();
}
return number_of_services;
}
size_t number_of_ready_events() const override
{
size_t number_of_events = 0;
for (auto waitable : waitable_handles_)
{
number_of_events += waitable->get_number_of_ready_events();
}
return number_of_events;
}
size_t number_of_ready_clients() const override
{
size_t number_of_clients = client_handles_.size();
for (auto waitable : waitable_handles_)
{
number_of_clients += waitable->get_number_of_ready_clients();
}
return number_of_clients;
}
size_t number_of_guard_conditions() const override
{
size_t number_of_guard_conditions = guard_conditions_.size();
for (auto waitable : waitable_handles_)
{
number_of_guard_conditions +=
waitable->get_number_of_ready_guard_conditions();
}
return number_of_guard_conditions;
}
size_t number_of_ready_timers() const override
{
size_t number_of_timers = timer_handles_.size();
for (auto waitable : waitable_handles_)
{
number_of_timers += waitable->get_number_of_ready_timers();
}
return number_of_timers;
}
size_t number_of_waitables() const override
{
return waitable_handles_.size();
}
void set_executable_priority(std::shared_ptr<const void> handle, int priority,
ExecutableType t)
{
// TODO: any sanity checks should go here
priority_map[handle] =
std::make_shared<PriorityExecutable>(handle, priority, t);
}
void set_executable_priority(std::shared_ptr<const void> handle, int priority,
ExecutableType t, ExecutableScheduleType sc,
int chain_index)
{
// TODO: any sanity checks should go here
priority_map[handle] =
std::make_shared<PriorityExecutable>(handle, priority, t, sc);
priority_map[handle]->chain_id = chain_index;
}
void set_executable_deadline(std::shared_ptr<const void> handle, int period,
ExecutableType t, int chain_id = 0,
std::string name = "")
{
// TODO: any sanity checks should go here
priority_map[handle] =
std::make_shared<PriorityExecutable>(handle, period, t, DEADLINE);
priority_map[handle]->chain_id = chain_id;
priority_map[handle]->name = name;
// is there a deadline queue for this chain id?
auto search = chain_deadlines.find(chain_id);
if (search == chain_deadlines.end())
{
chain_deadlines[chain_id] = std::make_shared<std::deque<uint64_t>>();
}
priority_map[handle]->deadlines = chain_deadlines[chain_id].get();
}
int get_priority(std::shared_ptr<const void> executable)
{
auto search = priority_map.find(executable);
if (search != priority_map.end())
{
return search->second->priority;
}
else
{
return 0;
}
}
void set_first_in_chain(std::shared_ptr<const void> exec_handle)
{
get_priority_settings(exec_handle)->is_first_in_chain = true;
}
void set_last_in_chain(std::shared_ptr<const void> exec_handle)
{
get_priority_settings(exec_handle)->is_last_in_chain = true;
}
void assign_deadlines_queue(std::shared_ptr<const void> exec_handle,
std::deque<uint64_t> *deadlines)
{
get_priority_settings(exec_handle)->deadlines = deadlines;
}
std::shared_ptr<std::deque<uint64_t>> get_chain_deadlines(int chain_id)
{
auto search = chain_deadlines.find(chain_id);
if (search != chain_deadlines.end())
{
return search->second;
}
else
{
return nullptr;
}
}
private: private:
std::shared_ptr<PriorityExecutable> std::shared_ptr<PriorityExecutable> get_and_reset_priority(std::shared_ptr<const void> executable,
get_and_reset_priority(std::shared_ptr<const void> executable, ExecutableType t);
ExecutableType t)
{
// PriorityExecutable *p = get_priority_settings(executable);
std::shared_ptr<PriorityExecutable> p = get_priority_settings(executable);
if (p == nullptr)
{
// priority_map[executable] = PriorityExecutable(executable, 0, t);
priority_map[executable] =
std::make_shared<PriorityExecutable>(executable, 0, t);
p = priority_map[executable];
}
// p->can_be_run = true;
return p;
}
template <typename T> template <typename T>
using VectorRebind = std::vector< using VectorRebind = std::vector<T, typename std::allocator_traits<Alloc>::template rebind_alloc<T>>;
T, typename std::allocator_traits<Alloc>::template rebind_alloc<T>>;
VectorRebind<const rcl_guard_condition_t *> guard_conditions_;
// Member variables
VectorRebind<const rcl_guard_condition_t*> guard_conditions_;
VectorRebind<std::shared_ptr<const rcl_subscription_t>> subscription_handles_; VectorRebind<std::shared_ptr<const rcl_subscription_t>> subscription_handles_;
VectorRebind<std::shared_ptr<const rcl_service_t>> service_handles_; VectorRebind<std::shared_ptr<const rcl_service_t>> service_handles_;
VectorRebind<std::shared_ptr<const rcl_client_t>> client_handles_; VectorRebind<std::shared_ptr<const rcl_client_t>> client_handles_;
VectorRebind<std::shared_ptr<const rcl_timer_t>> timer_handles_; VectorRebind<std::shared_ptr<const rcl_timer_t>> timer_handles_;
VectorRebind<std::shared_ptr<rclcpp::Waitable>> waitable_handles_; VectorRebind<std::shared_ptr<rclcpp::Waitable>> waitable_handles_;
std::shared_ptr<VoidAlloc> allocator_; std::shared_ptr<VoidAlloc> allocator_;
std::map<std::shared_ptr<const void>, std::shared_ptr<PriorityExecutable>> priority_map;
// TODO: evaluate using node/subscription namespaced strings as keys
// holds *all* handle->priority mappings
std::map<std::shared_ptr<const void>, std::shared_ptr<PriorityExecutable>>
priority_map;
std::map<int, std::shared_ptr<std::deque<uint64_t>>> chain_deadlines; std::map<int, std::shared_ptr<std::deque<uint64_t>>> chain_deadlines;
std::set<const PriorityExecutable*, PriorityExecutableComparator> all_executables_;
// hold *only valid* executable+priorities
// std::priority_queue<const PriorityExecutable *, std::vector<const
// PriorityExecutable *>, PriorityExecutableComparator> all_executables_;
std::set<const PriorityExecutable *, PriorityExecutableComparator>
all_executables_;
// priority queue doesn't allow iteration. fortunately, std::map is sorted by
// key, so we can replace the priority queue with a map the key will be the
// priority. the value doesn't matter. std::map<const PriorityExecutable *,
// int, PriorityExecutableComparator> all_executables_ = std::map<const
// PriorityExecutable *, int,
// PriorityExecutableComparator>(PriorityExecutableComparator());
void add_executable_to_queue(std::shared_ptr<PriorityExecutable> p); void add_executable_to_queue(std::shared_ptr<PriorityExecutable> p);
}; };
#endif // RCLCPP__STRATEGIES__ALLOCATOR_MEMORY_STRATEGY_HPP_ } // namespace priority_executor
#endif // PRIORITY_EXECUTOR__PRIORITY_MEMORY_STRATEGY_HPP_

View file

@ -2,15 +2,18 @@
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?> <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3"> <package format="3">
<name>priority_executor</name> <name>priority_executor</name>
<version>0.0.0</version> <version>0.1.0</version>
<description>TODO: Package description</description> <description>
ROS 2 package implementing priority-based executors for real-time task scheduling
</description>
<maintainer email="kurt4wilson@gmail.com">kurt</maintainer> <maintainer email="kurt4wilson@gmail.com">kurt</maintainer>
<license>TODO: License declaration</license> <license>Apache License 2.0</license>
<buildtool_depend>ament_cmake</buildtool_depend> <buildtool_depend>ament_cmake</buildtool_depend>
<depend>rclcpp</depend> <depend>rclcpp</depend>
<depend>rcl</depend> <depend>rcl</depend>
<depend>rmw</depend>
<depend>std_msgs</depend> <depend>std_msgs</depend>
<depend>std_srvs</depend> <depend>std_srvs</depend>
<depend>simple_timer</depend> <depend>simple_timer</depend>

View file

@ -13,42 +13,51 @@
// limitations under the License. // limitations under the License.
#include "priority_executor/default_executor.hpp" #include "priority_executor/default_executor.hpp"
#include <mutex>
#include <chrono>
#include <memory>
#include <thread>
#include <sstream>
#include <functional>
#include <unordered_map>
#include "rcpputils/scope_exit.hpp" #include "rcpputils/scope_exit.hpp"
#include "rclcpp/any_executable.hpp" #include "rclcpp/any_executable.hpp"
#include "simple_timer/rt-sched.hpp" #include "simple_timer/rt-sched.hpp"
ROSDefaultExecutor::ROSDefaultExecutor(const rclcpp::ExecutorOptions &options) namespace priority_executor {
: rclcpp::Executor(options)
{ std::unordered_map<ROSDefaultMultithreadedExecutor*,
std::shared_ptr<rclcpp::detail::MutexTwoPriorities>>
ROSDefaultMultithreadedExecutor::wait_mutex_set_;
std::mutex ROSDefaultMultithreadedExecutor::shared_wait_mutex_;
ROSDefaultExecutor::ROSDefaultExecutor(rclcpp::ExecutorOptions const &options)
: rclcpp::Executor(options) {
logger_ = create_logger(); logger_ = create_logger();
} }
ROSDefaultExecutor::~ROSDefaultExecutor() {} ROSDefaultExecutor::~ROSDefaultExecutor() {}
void ROSDefaultExecutor::wait_for_work(std::chrono::nanoseconds timeout) void ROSDefaultExecutor::wait_for_work(std::chrono::nanoseconds timeout) {
{
{ {
std::unique_lock<std::mutex> lock(memory_strategy_mutex_); std::unique_lock<std::mutex> lock(memory_strategy_mutex_);
// Collect the subscriptions and timers to be waited on // Collect the subscriptions and timers to be waited on
memory_strategy_->clear_handles(); memory_strategy_->clear_handles();
bool has_invalid_weak_nodes = memory_strategy_->collect_entities(weak_nodes_); bool const has_invalid_weak_nodes = memory_strategy_->collect_entities(weak_nodes_);
// Clean up any invalid nodes, if they were detected // Clean up any invalid nodes, if they were detected
if (has_invalid_weak_nodes) if (has_invalid_weak_nodes) {
{
auto node_it = weak_nodes_.begin(); auto node_it = weak_nodes_.begin();
auto gc_it = guard_conditions_.begin(); auto gc_it = guard_conditions_.begin();
while (node_it != weak_nodes_.end()) while (node_it != weak_nodes_.end()) {
{ if (node_it->expired()) {
if (node_it->expired())
{
node_it = weak_nodes_.erase(node_it); node_it = weak_nodes_.erase(node_it);
memory_strategy_->remove_guard_condition(*gc_it); memory_strategy_->remove_guard_condition(*gc_it);
gc_it = guard_conditions_.erase(gc_it); gc_it = guard_conditions_.erase(gc_it);
} } else {
else
{
++node_it; ++node_it;
++gc_it; ++gc_it;
} }
@ -56,37 +65,33 @@ void ROSDefaultExecutor::wait_for_work(std::chrono::nanoseconds timeout)
} }
// clear wait set // clear wait set
rcl_ret_t ret = rcl_wait_set_clear(&wait_set_); rcl_ret_t ret = rcl_wait_set_clear(&wait_set_);
if (ret != RCL_RET_OK) if (ret != RCL_RET_OK) {
{
rclcpp::exceptions::throw_from_rcl_error(ret, "Couldn't clear wait set"); rclcpp::exceptions::throw_from_rcl_error(ret, "Couldn't clear wait set");
} }
// The size of waitables are accounted for in size of the other entities // The size of waitables are accounted for in size of the other entities
ret = rcl_wait_set_resize( ret = rcl_wait_set_resize(
&wait_set_, memory_strategy_->number_of_ready_subscriptions(), &wait_set_, memory_strategy_->number_of_ready_subscriptions(),
memory_strategy_->number_of_guard_conditions(), memory_strategy_->number_of_ready_timers(), memory_strategy_->number_of_guard_conditions(),
memory_strategy_->number_of_ready_clients(), memory_strategy_->number_of_ready_services(), memory_strategy_->number_of_ready_timers(),
memory_strategy_->number_of_ready_clients(),
memory_strategy_->number_of_ready_services(),
memory_strategy_->number_of_ready_events()); memory_strategy_->number_of_ready_events());
if (RCL_RET_OK != ret) if (RCL_RET_OK != ret) {
{
rclcpp::exceptions::throw_from_rcl_error(ret, "Couldn't resize the wait set"); rclcpp::exceptions::throw_from_rcl_error(ret, "Couldn't resize the wait set");
} }
if (!memory_strategy_->add_handles_to_wait_set(&wait_set_)) if (!memory_strategy_->add_handles_to_wait_set(&wait_set_)) {
{
throw std::runtime_error("Couldn't fill wait set"); throw std::runtime_error("Couldn't fill wait set");
} }
} }
rcl_ret_t status = rcl_ret_t const status =
rcl_wait(&wait_set_, std::chrono::duration_cast<std::chrono::nanoseconds>(timeout).count()); rcl_wait(&wait_set_, std::chrono::duration_cast<std::chrono::nanoseconds>(timeout).count());
if (status == RCL_RET_WAIT_SET_EMPTY) if (status == RCL_RET_WAIT_SET_EMPTY) {
{
RCUTILS_LOG_WARN_NAMED( RCUTILS_LOG_WARN_NAMED(
"rclcpp", "rclcpp",
"empty wait set received in rcl_wait(). This should never happen."); "empty wait set received in rcl_wait(). This should never happen.");
} } else if (status != RCL_RET_OK && status != RCL_RET_TIMEOUT) {
else if (status != RCL_RET_OK && status != RCL_RET_TIMEOUT)
{
using rclcpp::exceptions::throw_from_rcl_error; using rclcpp::exceptions::throw_from_rcl_error;
throw_from_rcl_error(status, "rcl_wait() failed"); throw_from_rcl_error(status, "rcl_wait() failed");
} }
@ -96,8 +101,8 @@ void ROSDefaultExecutor::wait_for_work(std::chrono::nanoseconds timeout)
memory_strategy_->remove_null_handles(&wait_set_); memory_strategy_->remove_null_handles(&wait_set_);
} }
bool ROSDefaultExecutor::get_next_executable(rclcpp::AnyExecutable &any_executable, std::chrono::nanoseconds timeout) bool ROSDefaultExecutor::get_next_executable(rclcpp::AnyExecutable& any_executable,
{ std::chrono::nanoseconds timeout) {
bool success = false; bool success = false;
// Check to see if there are any subscriptions or timers needing service // Check to see if there are any subscriptions or timers needing service
// TODO(wjwwood): improve run to run efficiency of this function // TODO(wjwwood): improve run to run efficiency of this function
@ -107,76 +112,28 @@ bool ROSDefaultExecutor::get_next_executable(rclcpp::AnyExecutable &any_executab
return success; return success;
} }
void ROSDefaultExecutor::spin() void ROSDefaultExecutor::spin() {
{ if (spinning.exchange(true)) {
if (spinning.exchange(true))
{
throw std::runtime_error("spin() called while already spinning"); throw std::runtime_error("spin() called while already spinning");
} }
RCPPUTILS_SCOPE_EXIT(this->spinning.store(false);); RCPPUTILS_SCOPE_EXIT(this->spinning.store(false););
while (rclcpp::ok(this->context_) && spinning.load()) while (rclcpp::ok(this->context_) && spinning.load()) {
{
rclcpp::AnyExecutable any_executable; rclcpp::AnyExecutable any_executable;
if (get_next_executable(any_executable)) if (get_next_executable(any_executable)) {
{
execute_any_executable(any_executable); execute_any_executable(any_executable);
} }
} }
} }
bool ROSDefaultMultithreadedExecutor::get_next_executable(rclcpp::AnyExecutable &any_executable, std::chrono::nanoseconds timeout) size_t ROSDefaultMultithreadedExecutor::get_number_of_threads() {
{ return number_of_threads_;
bool success = false;
// Check to see if there are any subscriptions or timers needing service
// TODO(wjwwood): improve run to run efficiency of this function
// try to get an executable
// record the start time
auto start = std::chrono::steady_clock::now();
success = get_next_ready_executable(any_executable);
// and the end time
auto end = std::chrono::steady_clock::now();
std::stringstream oss;
oss << "{\"operation\":\"get_next_executable\", \"result\":\"" << success << "\", \"duration\":\"" << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "\"}";
log_entry(logger_, oss.str());
// If there are none
if (!success)
{
// Wait for subscriptions or timers to work on
// queue refresh
start = std::chrono::steady_clock::now();
wait_for_work(timeout);
// and the end time
end = std::chrono::steady_clock::now();
auto wait_duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
oss.str("");
oss << "{\"operation\":\"wait_for_work\", \"result\":\"" << success << "\", \"wait_duration\":\"" << wait_duration << "\"}";
log_entry(logger_, oss.str());
if (!spinning.load())
{
return false;
}
// Try again
start = std::chrono::steady_clock::now();
success = get_next_ready_executable(any_executable);
// and the end time
end = std::chrono::steady_clock::now();
oss.str("");
oss << "{\"operation\":\"get_next_executable\", \"result\":\"" << success << "\", \"duration\":\"" << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "\"}";
log_entry(logger_, oss.str());
}
return success;
} }
std::unordered_map<ROSDefaultMultithreadedExecutor *, std::shared_ptr<rclcpp::detail::MutexTwoPriorities>> ROSDefaultMultithreadedExecutor::wait_mutex_set_;
std::mutex ROSDefaultMultithreadedExecutor::shared_wait_mutex_;
ROSDefaultMultithreadedExecutor::ROSDefaultMultithreadedExecutor( ROSDefaultMultithreadedExecutor::ROSDefaultMultithreadedExecutor(
const rclcpp::ExecutorOptions &options, rclcpp::ExecutorOptions const &options,
int number_of_threads, std::chrono::nanoseconds next_exec_timeout) int number_of_threads,
: Executor(options) std::chrono::nanoseconds next_exec_timeout)
{ : Executor(options) {
std::lock_guard<std::mutex> wait_lock(ROSDefaultMultithreadedExecutor::shared_wait_mutex_); std::lock_guard<std::mutex> wait_lock(ROSDefaultMultithreadedExecutor::shared_wait_mutex_);
wait_mutex_set_[this] = std::make_shared<rclcpp::detail::MutexTwoPriorities>(); wait_mutex_set_[this] = std::make_shared<rclcpp::detail::MutexTwoPriorities>();
number_of_threads_ = number_of_threads; number_of_threads_ = number_of_threads;
@ -184,10 +141,8 @@ ROSDefaultMultithreadedExecutor::ROSDefaultMultithreadedExecutor(
logger_ = create_logger(); logger_ = create_logger();
} }
void ROSDefaultMultithreadedExecutor::spin() void ROSDefaultMultithreadedExecutor::spin() {
{ if (spinning.exchange(true)) {
if (spinning.exchange(true))
{
throw std::runtime_error("spin() called while already spinning"); throw std::runtime_error("spin() called while already spinning");
} }
@ -196,45 +151,39 @@ void ROSDefaultMultithreadedExecutor::spin()
{ {
auto wait_mutex = ROSDefaultMultithreadedExecutor::wait_mutex_set_[this]; auto wait_mutex = ROSDefaultMultithreadedExecutor::wait_mutex_set_[this];
auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable(); auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable();
std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable> wait_lock(low_priority_wait_mutex); std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable>
for (; thread_id < number_of_threads_ - 1; ++thread_id) wait_lock(low_priority_wait_mutex);
{ for (; thread_id < number_of_threads_ - 1; ++thread_id) {
auto func = std::bind(&ROSDefaultMultithreadedExecutor::run, this, thread_id); auto const func = std::bind(&ROSDefaultMultithreadedExecutor::run, this, thread_id);
threads.emplace_back(func); threads.emplace_back(func);
} }
} }
run(thread_id); run(thread_id);
for (auto &thread : threads) for (auto& thread : threads) {
{
thread.join(); thread.join();
} }
} }
void ROSDefaultMultithreadedExecutor::run(__attribute__((unused)) size_t _thread_number) { void ROSDefaultMultithreadedExecutor::run(size_t thread_number) {
while (rclcpp::ok(this->context_) && spinning.load()) while (rclcpp::ok(this->context_) && spinning.load()) {
{
rclcpp::AnyExecutable any_exec; rclcpp::AnyExecutable any_exec;
{ {
auto wait_mutex = ROSDefaultMultithreadedExecutor::wait_mutex_set_[this]; auto wait_mutex = ROSDefaultMultithreadedExecutor::wait_mutex_set_[this];
auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable(); auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable();
std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable> wait_lock(low_priority_wait_mutex); std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable>
if (!rclcpp::ok(this->context_) || !spinning.load()) wait_lock(low_priority_wait_mutex);
{ if (!rclcpp::ok(this->context_) || !spinning.load()) {
return; return;
} }
if (!get_next_executable(any_exec, next_exec_timeout_)) if (!get_next_executable(any_exec, next_exec_timeout_)) {
{
continue; continue;
} }
if (any_exec.timer) if (any_exec.timer) {
{
// Guard against multiple threads getting the same timer. // Guard against multiple threads getting the same timer.
if (scheduled_timers_.count(any_exec.timer) != 0) if (scheduled_timers_.count(any_exec.timer) != 0) {
{
// Make sure that any_exec's callback group is reset before // Make sure that any_exec's callback group is reset before
// the lock is released. // the lock is released.
if (any_exec.callback_group) if (any_exec.callback_group) {
{
any_exec.callback_group->can_be_taken_from().store(true); any_exec.callback_group->can_be_taken_from().store(true);
} }
continue; continue;
@ -242,21 +191,16 @@ void ROSDefaultMultithreadedExecutor::run(__attribute__((unused)) size_t _thread
scheduled_timers_.insert(any_exec.timer); scheduled_timers_.insert(any_exec.timer);
} }
} }
// if (yield_before_execute_)
// {
// std::this_thread::yield();
// }
execute_any_executable(any_exec); execute_any_executable(any_exec);
if (any_exec.timer) if (any_exec.timer) {
{
auto wait_mutex = ROSDefaultMultithreadedExecutor::wait_mutex_set_[this]; auto wait_mutex = ROSDefaultMultithreadedExecutor::wait_mutex_set_[this];
auto high_priority_wait_mutex = wait_mutex->get_high_priority_lockable(); auto high_priority_wait_mutex = wait_mutex->get_high_priority_lockable();
std::lock_guard<rclcpp::detail::MutexTwoPriorities::HighPriorityLockable> wait_lock(high_priority_wait_mutex); std::lock_guard<rclcpp::detail::MutexTwoPriorities::HighPriorityLockable>
auto it = scheduled_timers_.find(any_exec.timer); wait_lock(high_priority_wait_mutex);
if (it != scheduled_timers_.end()) auto const it = scheduled_timers_.find(any_exec.timer);
{ if (it != scheduled_timers_.end()) {
scheduled_timers_.erase(it); scheduled_timers_.erase(it);
} }
} }
@ -265,3 +209,57 @@ void ROSDefaultMultithreadedExecutor::run(__attribute__((unused)) size_t _thread
any_exec.callback_group.reset(); any_exec.callback_group.reset();
} }
} }
bool ROSDefaultMultithreadedExecutor::get_next_executable(rclcpp::AnyExecutable& any_executable,
std::chrono::nanoseconds timeout) {
bool success = false;
// Check to see if there are any subscriptions or timers needing service
// TODO(wjwwood): improve run to run efficiency of this function
// try to get an executable
// record the start time
auto const start = std::chrono::steady_clock::now();
success = get_next_ready_executable(any_executable);
// and the end time
auto const end = std::chrono::steady_clock::now();
std::stringstream oss;
oss << "{\"operation\":\"get_next_executable\", \"result\":\"" << success
<< "\", \"duration\":\""
<< std::chrono::duration_cast<std::chrono::microseconds>(end - start).count()
<< "\"}";
log_entry(logger_, oss.str());
// If there are none
if (!success) {
// Wait for subscriptions or timers to work on
// queue refresh
auto const wait_start = std::chrono::steady_clock::now();
wait_for_work(timeout);
// and the end time
auto const wait_end = std::chrono::steady_clock::now();
auto const wait_duration = std::chrono::duration_cast<std::chrono::microseconds>(
wait_end - wait_start).count();
oss.str("");
oss << "{\"operation\":\"wait_for_work\", \"result\":\"" << success
<< "\", \"wait_duration\":\"" << wait_duration << "\"}";
log_entry(logger_, oss.str());
if (!spinning.load()) {
return false;
}
// Try again
auto const retry_start = std::chrono::steady_clock::now();
success = get_next_ready_executable(any_executable);
// and the end time
auto const retry_end = std::chrono::steady_clock::now();
oss.str("");
oss << "{\"operation\":\"get_next_executable\", \"result\":\"" << success
<< "\", \"duration\":\""
<< std::chrono::duration_cast<std::chrono::microseconds>(
retry_end - retry_start).count()
<< "\"}";
log_entry(logger_, oss.str());
}
return success;
}
} // namespace priority_executor

View file

@ -1,31 +1,44 @@
#include "priority_executor/multithread_priority_executor.hpp" #include "priority_executor/multithread_priority_executor.hpp"
namespace timed_executor
{ #include <chrono>
std::unordered_map<MultithreadTimedExecutor *, std::shared_ptr<rclcpp::detail::MutexTwoPriorities>> #include <functional>
#include <memory>
#include <mutex>
#include <sstream>
#include <thread>
#include <unordered_map>
#include "rcpputils/scope_exit.hpp"
#include "rclcpp/any_executable.hpp"
#include "simple_timer/rt-sched.hpp"
namespace priority_executor {
std::unordered_map<MultithreadTimedExecutor*,
std::shared_ptr<rclcpp::detail::MutexTwoPriorities>>
MultithreadTimedExecutor::wait_mutex_set_; MultithreadTimedExecutor::wait_mutex_set_;
std::mutex MultithreadTimedExecutor::shared_wait_mutex_; std::mutex MultithreadTimedExecutor::shared_wait_mutex_;
MultithreadTimedExecutor::MultithreadTimedExecutor(
const rclcpp::ExecutorOptions &options, MultithreadTimedExecutor::MultithreadTimedExecutor(
std::string name, rclcpp::ExecutorOptions const &options,
int number_of_threads, std::chrono::nanoseconds next_exec_timeout) std::string const &name,
: TimedExecutor(options, name) int number_of_threads,
{ std::chrono::nanoseconds next_exec_timeout)
: TimedExecutor(options, name) {
std::lock_guard<std::mutex> wait_lock(MultithreadTimedExecutor::shared_wait_mutex_); std::lock_guard<std::mutex> wait_lock(MultithreadTimedExecutor::shared_wait_mutex_);
wait_mutex_set_[this] = std::make_shared<rclcpp::detail::MutexTwoPriorities>(); wait_mutex_set_[this] = std::make_shared<rclcpp::detail::MutexTwoPriorities>();
number_of_threads_ = number_of_threads; number_of_threads_ = number_of_threads;
next_exec_timeout_ = next_exec_timeout; next_exec_timeout_ = next_exec_timeout;
logger_ = create_logger(); logger_ = create_logger();
} }
size_t MultithreadTimedExecutor::get_number_of_threads() size_t MultithreadTimedExecutor::get_number_of_threads()
{ {
return number_of_threads_; return number_of_threads_;
} }
void MultithreadTimedExecutor::spin() void MultithreadTimedExecutor::spin() {
{ if (spinning.exchange(true)) {
if (spinning.exchange(true))
{
throw std::runtime_error("spin() called while already spinning"); throw std::runtime_error("spin() called while already spinning");
} }
@ -34,81 +47,80 @@ namespace timed_executor
{ {
auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this]; auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this];
auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable(); auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable();
std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable> wait_lock(low_priority_wait_mutex); std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable>
for (; thread_id < number_of_threads_ - 1; ++thread_id) wait_lock(low_priority_wait_mutex);
{ for (; thread_id < number_of_threads_ - 1; ++thread_id) {
auto func = std::bind(&MultithreadTimedExecutor::run, this, thread_id); auto const func = std::bind(&MultithreadTimedExecutor::run, this, thread_id);
threads.emplace_back(func); threads.emplace_back(func);
} }
} }
run(thread_id); run(thread_id);
for (auto &thread : threads) for (auto& thread : threads) {
{
thread.join(); thread.join();
} }
} }
void MultithreadTimedExecutor::run(size_t thread_number) void MultithreadTimedExecutor::run(size_t _thread_number) {
{
// set affinity // set affinity
cpu_set_t cpuset; cpu_set_t cpuset;
CPU_ZERO(&cpuset); CPU_ZERO(&cpuset);
CPU_SET(thread_number, &cpuset); CPU_SET(_thread_number, &cpuset);
int rc = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset); int rc = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
if (rc != 0) if (rc != 0)
{ {
std::cout << "Error calling pthread_setaffinity_np: " << rc << "\n"; std::cout << "Error calling pthread_setaffinity_np: " << rc << "\n";
} }
while (rclcpp::ok(this->context_) && spinning.load()) while (rclcpp::ok(this->context_) && spinning.load()) {
{ rclcpp::AnyExecutable any_exec;
rclcpp::AnyExecutable any_executable;
{ {
auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this]; auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this];
auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable(); auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable();
std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable> wait_lock(low_priority_wait_mutex); std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable>
if (!rclcpp::ok(this->context_) || !spinning.load()) wait_lock(low_priority_wait_mutex);
{ if (!rclcpp::ok(this->context_) || !spinning.load()) {
return; return;
} }
if (!get_next_executable(any_executable, next_exec_timeout_)) if (!get_next_executable(any_exec, next_exec_timeout_)) {
{
continue; continue;
} }
if (any_executable.timer) if (any_exec.timer) {
{ // Guard against multiple threads getting the same timer.
if (scheduled_timers_.count(any_executable.timer) != 0) if (scheduled_timers_.count(any_exec.timer) != 0) {
{ // Make sure that any_exec's callback group is reset before
if (any_executable.callback_group) // the lock is released.
{ if (any_exec.callback_group) {
any_executable.callback_group->can_be_taken_from().store(true); any_exec.callback_group->can_be_taken_from().store(true);
} }
continue; continue;
} }
scheduled_timers_.insert(any_executable.timer); scheduled_timers_.insert(any_exec.timer);
} }
} }
execute_any_executable(any_executable);
if (any_executable.timer) execute_any_executable(any_exec);
{
if (any_exec.timer) {
auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this]; auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this];
auto high_priority_wait_mutex = wait_mutex->get_high_priority_lockable(); auto high_priority_wait_mutex = wait_mutex->get_high_priority_lockable();
std::lock_guard<rclcpp::detail::MutexTwoPriorities::HighPriorityLockable> wait_lock(high_priority_wait_mutex); std::lock_guard<rclcpp::detail::MutexTwoPriorities::HighPriorityLockable>
auto it = scheduled_timers_.find(any_executable.timer); wait_lock(high_priority_wait_mutex);
if (it != scheduled_timers_.end()) auto const it = scheduled_timers_.find(any_exec.timer);
{ if (it != scheduled_timers_.end()) {
scheduled_timers_.erase(it); scheduled_timers_.erase(it);
} }
} }
any_executable.callback_group.reset(); // Clear the callback_group to prevent the AnyExecutable destructor from
// resetting the callback group `can_be_taken_from`
any_exec.callback_group.reset();
if (prio_memory_strategy_ != nullptr) if (prio_memory_strategy_ != nullptr)
{ {
auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this]; auto wait_mutex = MultithreadTimedExecutor::wait_mutex_set_[this];
auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable(); auto low_priority_wait_mutex = wait_mutex->get_low_priority_lockable();
std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable> wait_lock(low_priority_wait_mutex); std::lock_guard<rclcpp::detail::MutexTwoPriorities::LowPriorityLockable> wait_lock(low_priority_wait_mutex);
// std::shared_ptr<PriorityMemoryStrategy<>> prio_memory_strategy_ = std::dynamic_pointer_cast<PriorityMemoryStrategy>(memory_strategy_); // std::shared_ptr<PriorityMemoryStrategy<>> prio_memory_strategy_ = std::dynamic_pointer_cast<PriorityMemoryStrategy>(memory_strategy_);
prio_memory_strategy_->post_execute(any_executable, thread_number); prio_memory_strategy_->post_execute(any_exec, _thread_number);
}
} }
} }
} }
} // namespace priority_executor

View file

@ -19,79 +19,79 @@
#include "rclcpp/utilities.hpp" #include "rclcpp/utilities.hpp"
#include <memory> #include <memory>
#include <sched.h> #include <sched.h>
// for sleep #include <unistd.h> // for sleep
#include <unistd.h>
namespace timed_executor namespace priority_executor
{ {
TimedExecutor::TimedExecutor(const rclcpp::ExecutorOptions &options, std::string name) TimedExecutor::TimedExecutor(rclcpp::ExecutorOptions const &options, std::string name)
: rclcpp::Executor(options) : rclcpp::Executor(options) {
{ this->name = std::move(name);
this->name = name;
logger_ = create_logger(); logger_ = create_logger();
} }
TimedExecutor::~TimedExecutor() {} TimedExecutor::~TimedExecutor() = default;
void void TimedExecutor::spin() {
TimedExecutor::spin() if (spinning.exchange(true)) {
{
if (spinning.exchange(true))
{
throw std::runtime_error("spin() called while already spinning"); throw std::runtime_error("spin() called while already spinning");
} }
RCLCPP_SCOPE_EXIT(this->spinning.store(false);); RCLCPP_SCOPE_EXIT(this->spinning.store(false););
while (rclcpp::ok(this->context_) && spinning.load())
{ while (rclcpp::ok(this->context_) && spinning.load()) {
rclcpp::AnyExecutable any_executable; rclcpp::AnyExecutable any_executable;
// std::cout<<memory_strategy_->number_of_ready_timers()<<std::endl; // std::cout<<memory_strategy_->number_of_ready_timers()<<std::endl;
// std::cout << "spinning " << this->name << std::endl; // std::cout << "spinning " << this->name << std::endl;
// size_t ready = memory_strategy_->number_of_ready_subscriptions(); // size_t ready = memory_strategy_->number_of_ready_subscriptions();
// std::cout << "ready:" << ready << std::endl; // std::cout << "ready:" << ready << std::endl;
if (get_next_executable(any_executable, std::chrono::nanoseconds(-1))) if (get_next_executable(any_executable, std::chrono::nanoseconds(-1))) {
{
execute_any_executable(any_executable); execute_any_executable(any_executable);
// make sure memory_strategy_ is an instance of PriorityMemoryStrategy // make sure memory_strategy_ is an instance of PriorityMemoryStrategy
if (prio_memory_strategy_!=nullptr) if (prio_memory_strategy_ != nullptr) {
{
prio_memory_strategy_->post_execute(any_executable); prio_memory_strategy_->post_execute(any_executable);
} }
} }
} }
RCLCPP_INFO(rclcpp::get_logger("priority_executor"), "priority executor shutdown"); RCLCPP_INFO(rclcpp::get_logger("priority_executor"), "priority executor shutdown");
} }
bool TimedExecutor::get_next_executable(rclcpp::AnyExecutable &any_executable, std::chrono::nanoseconds timeout) bool TimedExecutor::get_next_executable(
{ rclcpp::AnyExecutable& any_executable,
std::chrono::nanoseconds timeout) {
bool success = false; bool success = false;
// Check to see if there are any subscriptions or timers needing service // Check to see if there are any subscriptions or timers needing service
// TODO(wjwwood): improve run to run efficiency of this function // TODO(wjwwood): improve run to run efficiency of this function
// sched_yield(); // sched_yield();
// sleep for 10us // sleep for 10us
// usleep(20); // usleep(20);
auto start = std::chrono::steady_clock::now();
auto const start = std::chrono::steady_clock::now();
wait_for_work(timeout); wait_for_work(timeout);
auto end = std::chrono::steady_clock::now(); auto const end = std::chrono::steady_clock::now();
auto wait_duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start); auto const wait_duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::ostringstream oss; std::ostringstream oss;
oss << "{\"operation\": \"wait_for_work\", \"wait_duration\": " << wait_duration.count() << "}"; oss << "{\"operation\": \"wait_for_work\", \"wait_duration\": " << wait_duration.count() << "}";
log_entry(logger_, oss.str()); log_entry(logger_, oss.str());
start = std::chrono::steady_clock::now(); auto const exec_start = std::chrono::steady_clock::now();
success = get_next_ready_executable(any_executable); success = get_next_ready_executable(any_executable);
end = std::chrono::steady_clock::now(); auto const exec_end = std::chrono::steady_clock::now();
auto get_next_duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start); auto const get_next_duration = std::chrono::duration_cast<std::chrono::microseconds>(exec_end - exec_start);
oss.str("");
oss << "{\"operation\": \"get_next_executable\", \"duration\": " << get_next_duration.count() << ", \"result\": " << success << "}";
log_entry(logger_, oss.str());
return success;
}
// TODO: since we're calling this more often, clean it up a bit oss.str("");
void oss << "{\"operation\": \"get_next_executable\", \"duration\": " << get_next_duration.count()
TimedExecutor::wait_for_work(std::chrono::nanoseconds timeout) << ", \"result\": " << success << "}";
{ log_entry(logger_, oss.str());
return success;
}
// TODO: since we're calling this more often, clean it up a bit
void
TimedExecutor::wait_for_work(std::chrono::nanoseconds timeout)
{
{ {
std::unique_lock<std::mutex> lock(memory_strategy_mutex_); std::unique_lock<std::mutex> lock(memory_strategy_mutex_);
@ -159,10 +159,10 @@ namespace timed_executor
// check the null handles in the wait set and remove them from the handles in memory strategy // check the null handles in the wait set and remove them from the handles in memory strategy
// for callback-based entities // for callback-based entities
memory_strategy_->remove_null_handles(&wait_set_); memory_strategy_->remove_null_handles(&wait_set_);
} }
bool bool
TimedExecutor::get_next_ready_executable(rclcpp::AnyExecutable &any_executable) TimedExecutor::get_next_ready_executable(rclcpp::AnyExecutable &any_executable)
{ {
bool success = false; bool success = false;
if (use_priorities) if (use_priorities)
{ {
@ -244,11 +244,11 @@ namespace timed_executor
} }
// If there is no ready executable, return false // If there is no ready executable, return false
return success; return success;
} }
void TimedExecutor::set_use_priorities(bool use_prio) void TimedExecutor::set_use_priorities(bool use_prio)
{ {
use_priorities = use_prio; use_priorities = use_prio;
} }
} // namespace timed_executor } // namespace timed_executor

View file

@ -1,55 +1,305 @@
#include "priority_executor/priority_memory_strategy.hpp" #include "priority_executor/priority_memory_strategy.hpp"
#include "simple_timer/rt-sched.hpp" #include "simple_timer/rt-sched.hpp"
#include <ctime> #include <ctime>
#include <rclcpp/logging.hpp>
#include <semaphore.h>
#include <sstream> #include <sstream>
#include <semaphore.h>
#include <rclcpp/logging.hpp>
using namespace priority_executor;
template<typename Alloc>
PriorityMemoryStrategy<Alloc>::PriorityMemoryStrategy(std::shared_ptr<Alloc> allocator)
{
allocator_ = std::make_shared<VoidAlloc>(*allocator.get());
logger_ = create_logger();
}
template<>
PriorityMemoryStrategy<>::PriorityMemoryStrategy()
{
allocator_ = std::make_shared<VoidAlloc>();
logger_ = create_logger();
}
std::ostream& priority_executor::operator<<(std::ostream& os, const ExecutableType& obj)
{
os << static_cast<std::underlying_type<ExecutableType>::type>(obj);
return os;
}
std::ostream& priority_executor::operator<<(std::ostream& os, const ExecutableScheduleType& obj)
{
os << static_cast<std::underlying_type<ExecutableScheduleType>::type>(obj);
return os;
}
std::ostream& priority_executor::operator<<(std::ostream &os, const PriorityExecutable &pe)
{
os << "sched_type: " << pe.sched_type << ", ";
if (pe.sched_type == ExecutableScheduleType::DEADLINE) {
os << "period: " << pe.period << ", ";
}
os << "priority: " << pe.priority << ", ";
os << "executable_id: " << pe.executable_id << ", ";
os << "chain_id: " << pe.chain_id << ", ";
os << "is_first_in_chain: " << pe.is_first_in_chain << ", ";
os << "is_last_in_chain: " << pe.is_last_in_chain << ", ";
return os;
}
size_t PriorityExecutable::num_executables; size_t PriorityExecutable::num_executables;
PriorityExecutable::PriorityExecutable(std::shared_ptr<const void> h, int p, template<>
std::shared_ptr<PriorityExecutable>
PriorityMemoryStrategy<>::get_priority_settings(std::shared_ptr<const void> executable)
{
auto search = priority_map.find(executable);
if (search != priority_map.end())
{
return search->second;
}
return nullptr;
}
template<>
std::shared_ptr<PriorityExecutable>
PriorityMemoryStrategy<>::get_and_reset_priority(std::shared_ptr<const void> executable,
ExecutableType t)
{
// PriorityExecutable *p = get_priority_settings(executable);
std::shared_ptr<PriorityExecutable> p = get_priority_settings(executable);
if (p == nullptr)
{
// priority_map[executable] = PriorityExecutable(executable, 0, t);
priority_map[executable] =
std::make_shared<PriorityExecutable>(executable, 0, t);
p = priority_map[executable];
}
// p->can_be_run = true;
return p;
}
template<>
rcl_allocator_t PriorityMemoryStrategy<>::get_allocator()
{
return rclcpp::allocator::get_rcl_allocator<void *, VoidAlloc>(
*allocator_.get());
}
template<>
size_t PriorityMemoryStrategy<>::number_of_ready_subscriptions() const
{
size_t number_of_subscriptions = subscription_handles_.size();
// std::cout << "ready_raw: " << number_of_subscriptions << std::endl;
for (auto waitable : waitable_handles_)
{
number_of_subscriptions += waitable->get_number_of_ready_subscriptions();
}
return number_of_subscriptions;
}
template<>
size_t PriorityMemoryStrategy<>::number_of_ready_services() const
{
size_t number_of_services = service_handles_.size();
for (auto waitable : waitable_handles_)
{
number_of_services += waitable->get_number_of_ready_services();
}
return number_of_services;
}
template<>
size_t PriorityMemoryStrategy<>::number_of_ready_events() const
{
size_t number_of_events = 0;
for (auto waitable : waitable_handles_)
{
number_of_events += waitable->get_number_of_ready_events();
}
return number_of_events;
}
template<>
size_t PriorityMemoryStrategy<>::number_of_ready_clients() const
{
size_t number_of_clients = client_handles_.size();
for (auto waitable : waitable_handles_)
{
number_of_clients += waitable->get_number_of_ready_clients();
}
return number_of_clients;
}
template<>
size_t PriorityMemoryStrategy<>::number_of_guard_conditions() const
{
size_t number_of_guard_conditions = guard_conditions_.size();
for (auto waitable : waitable_handles_)
{
number_of_guard_conditions +=
waitable->get_number_of_ready_guard_conditions();
}
return number_of_guard_conditions;
}
template<>
size_t PriorityMemoryStrategy<>::number_of_ready_timers() const
{
size_t number_of_timers = timer_handles_.size();
for (auto waitable : waitable_handles_)
{
number_of_timers += waitable->get_number_of_ready_timers();
}
return number_of_timers;
}
template<>
size_t PriorityMemoryStrategy<>::number_of_waitables() const
{
return waitable_handles_.size();
}
template<>
void PriorityMemoryStrategy<>::set_executable_priority(std::shared_ptr<const void> handle, int priority,
ExecutableType t)
{
// TODO: any sanity checks should go here
priority_map[handle] =
std::make_shared<PriorityExecutable>(handle, priority, t);
}
template<>
void PriorityMemoryStrategy<>::set_executable_priority(std::shared_ptr<const void> handle, int priority,
ExecutableType t, ExecutableScheduleType sc,
int chain_index)
{
// TODO: any sanity checks should go here
priority_map[handle] =
std::make_shared<PriorityExecutable>(handle, priority, t, sc);
priority_map[handle]->chain_id = chain_index;
}
template<>
void PriorityMemoryStrategy<>::set_executable_deadline(std::shared_ptr<const void> handle, int period,
ExecutableType t, int chain_id,
std::string name)
{
// TODO: any sanity checks should go here
priority_map[handle] =
std::make_shared<PriorityExecutable>(handle, period, t, ExecutableScheduleType::DEADLINE);
priority_map[handle]->chain_id = chain_id;
priority_map[handle]->name = name;
// is there a deadline queue for this chain id?
auto search = chain_deadlines.find(chain_id);
if (search == chain_deadlines.end())
{
chain_deadlines[chain_id] = std::make_shared<std::deque<uint64_t>>();
}
priority_map[handle]->deadlines = chain_deadlines[chain_id].get();
}
template<>
int PriorityMemoryStrategy<>::get_priority(std::shared_ptr<const void> executable)
{
auto search = priority_map.find(executable);
if (search != priority_map.end())
{
return search->second->priority;
}
else
{
return 0;
}
}
template<>
void PriorityMemoryStrategy<>::set_first_in_chain(std::shared_ptr<const void> exec_handle)
{
get_priority_settings(exec_handle)->is_first_in_chain = true;
}
template<>
void PriorityMemoryStrategy<>::set_last_in_chain(std::shared_ptr<const void> exec_handle)
{
get_priority_settings(exec_handle)->is_last_in_chain = true;
}
template<>
void PriorityMemoryStrategy<>::assign_deadlines_queue(std::shared_ptr<const void> exec_handle,
std::deque<uint64_t> *deadlines)
{
get_priority_settings(exec_handle)->deadlines = deadlines;
}
template<>
std::shared_ptr<std::deque<uint64_t>> PriorityMemoryStrategy<>::get_chain_deadlines(int chain_id)
{
auto search = chain_deadlines.find(chain_id);
if (search != chain_deadlines.end())
{
return search->second;
}
else
{
return nullptr;
}
}
PriorityExecutable::PriorityExecutable(
std::shared_ptr<void const> h,
int p,
ExecutableType t, ExecutableType t,
ExecutableScheduleType sched_type) { ExecutableScheduleType sched_type) {
handle = std::move(h);
std::cout << "priority_executable constructor called" << std::endl; std::cout << "priority_executable constructor called" << std::endl;
std::cout << "type: " << t << std::endl; std::cout << "type: " << t << std::endl;
handle = h;
type = t; type = t;
if (sched_type == CHAIN_INDEPENDENT_PRIORITY ||
sched_type == CHAIN_AWARE_PRIORITY) { if (sched_type == ExecutableScheduleType::CHAIN_INDEPENDENT_PRIORITY
|| sched_type == ExecutableScheduleType::CHAIN_AWARE_PRIORITY) {
priority = p; priority = p;
} else if (sched_type == DEADLINE) { } else if (sched_type == ExecutableScheduleType::DEADLINE) {
period = p; period = p;
// as a tiebreaker // as a tiebreaker
priority = num_executables; priority = num_executables;
} }
this->sched_type = sched_type;
this->sched_type = sched_type;
this->executable_id = num_executables; this->executable_id = num_executables;
num_executables += 1; num_executables += 1;
} }
PriorityExecutable::PriorityExecutable() { PriorityExecutable::PriorityExecutable()
handle = nullptr; : handle(nullptr)
priority = 0; , type(ExecutableType::SUBSCRIPTION)
type = SUBSCRIPTION; , priority(0) {
} }
void PriorityExecutable::dont_run() { this->can_be_run = false; } void PriorityExecutable::dont_run() {
this->can_be_run = false;
}
void PriorityExecutable::allow_run() { this->can_be_run = true; } void PriorityExecutable::allow_run() {
this->can_be_run = true;
}
void PriorityExecutable::increment_counter() { this->counter += 1; } void PriorityExecutable::increment_counter() {
this->counter += 1;
}
bool PriorityExecutable::operator==(const PriorityExecutable &other) const { bool PriorityExecutable::operator==(PriorityExecutable const &other) const {
std::cout << "PriorityExecutable::operator== called" << std::endl; std::cout << "PriorityExecutable::operator== called" << std::endl;
if (this->handle == other.handle) { return this->handle == other.handle;
return true;
} else {
return false;
}
} }
bool PriorityExecutableComparator::operator()(const PriorityExecutable *p1, bool PriorityExecutableComparator::operator()(
const PriorityExecutable *p2) { PriorityExecutable const *p1,
PriorityExecutable const *p2) const
{
// since this will be used in a std::set, also check for equality // since this will be used in a std::set, also check for equality
if (p1 == nullptr || p2 == nullptr) { if (p1 == nullptr || p2 == nullptr) {
// TODO: realistic value // TODO: realistic value
@ -57,10 +307,8 @@ bool PriorityExecutableComparator::operator()(const PriorityExecutable *p1,
<< std::endl; << std::endl;
return false; return false;
} }
if (p1->handle == p2->handle) {
return false; if (p1->handle == p2->handle || p1->executable_id == p2->executable_id) {
}
if (p1->executable_id == p2->executable_id) {
return false; return false;
} }
@ -68,30 +316,34 @@ bool PriorityExecutableComparator::operator()(const PriorityExecutable *p1,
// in order: DEADLINE, CHAIN_AWARE, CHAIN_INDEPENDENT // in order: DEADLINE, CHAIN_AWARE, CHAIN_INDEPENDENT
return p1->sched_type < p2->sched_type; return p1->sched_type < p2->sched_type;
} }
if (p1->sched_type == CHAIN_INDEPENDENT_PRIORITY) {
if (p1->priority == p2->priority) { if (p1->sched_type == ExecutableScheduleType::CHAIN_INDEPENDENT_PRIORITY) {
return p1->executable_id < p2->executable_id; return p1->priority == p2->priority ?
p1->executable_id < p2->executable_id :
// tie-breaker: lower value runs first
p1->priority < p2->priority;
} }
// lower value runs first
return p1->priority < p2->priority; if (p1->sched_type == ExecutableScheduleType::CHAIN_AWARE_PRIORITY) {
return p1->priority == p2->priority ?
p1->executable_id < p2->executable_id :
// tie-breaker: lower value runs first
p1->priority < p2->priority;
} }
if (p1->sched_type == CHAIN_AWARE_PRIORITY) {
if (p1->priority == p2->priority) { if (p1->sched_type == ExecutableScheduleType::DEADLINE) {
return p1->executable_id < p2->executable_id;
}
return p1->priority < p2->priority;
}
if (p1->sched_type == DEADLINE) {
// TODO: use the counter logic here as well // TODO: use the counter logic here as well
uint64_t p1_deadline = 0; uint64_t p1_deadline = 0;
uint64_t p2_deadline = 0; uint64_t p2_deadline = 0;
if (p1->deadlines != nullptr && !p1->deadlines->empty()) { if (p1->deadlines != nullptr && !p1->deadlines->empty()) {
p1_deadline = p1->deadlines->front(); p1_deadline = p1->deadlines->front();
} }
if (p2->deadlines != nullptr && !p2->deadlines->empty()) { if (p2->deadlines != nullptr && !p2->deadlines->empty()) {
p2_deadline = p2->deadlines->front(); p2_deadline = p2->deadlines->front();
} }
if (p1_deadline == p2_deadline || p1->deadlines == p2->deadlines) { if (p1_deadline == p2_deadline || p1->deadlines == p2->deadlines) {
// this looks bad and is bad, BUT // this looks bad and is bad, BUT
// if we tell std::set these are equal, only one will be added, and we // if we tell std::set these are equal, only one will be added, and we
@ -104,6 +356,7 @@ bool PriorityExecutableComparator::operator()(const PriorityExecutable *p1,
} }
return p1->executable_id < p2->executable_id; return p1->executable_id < p2->executable_id;
} }
if (p1_deadline == 0) { if (p1_deadline == 0) {
p1_deadline = std::numeric_limits<uint64_t>::max(); p1_deadline = std::numeric_limits<uint64_t>::max();
} }
@ -111,16 +364,16 @@ bool PriorityExecutableComparator::operator()(const PriorityExecutable *p1,
p2_deadline = std::numeric_limits<uint64_t>::max(); p2_deadline = std::numeric_limits<uint64_t>::max();
} }
return p1_deadline < p2_deadline; return p1_deadline < p2_deadline;
} else { }
std::cout << "invalid compare opration on priority_exec" << std::endl; std::cout << "invalid compare opration on priority_exec" << std::endl;
return false; return false;
}
} }
template <> template <>
void PriorityMemoryStrategy<>::add_guard_condition( void PriorityMemoryStrategy<>::add_guard_condition(
const rcl_guard_condition_t *guard_condition) { rcl_guard_condition_t const *guard_condition) {
for (const auto &existing_guard_condition : guard_conditions_) { for (auto const &existing_guard_condition : guard_conditions_) {
if (existing_guard_condition == guard_condition) { if (existing_guard_condition == guard_condition) {
return; return;
} }
@ -130,9 +383,8 @@ void PriorityMemoryStrategy<>::add_guard_condition(
template <> template <>
void PriorityMemoryStrategy<>::remove_guard_condition( void PriorityMemoryStrategy<>::remove_guard_condition(
const rcl_guard_condition_t *guard_condition) { rcl_guard_condition_t const *guard_condition) {
for (auto it = guard_conditions_.begin(); it != guard_conditions_.end(); for (auto it = guard_conditions_.begin(); it != guard_conditions_.end(); ++it) {
++it) {
if (*it == guard_condition) { if (*it == guard_condition) {
guard_conditions_.erase(it); guard_conditions_.erase(it);
break; break;
@ -149,7 +401,8 @@ void PriorityMemoryStrategy<>::add_executable_to_queue(
all_executables_.insert(e.get()); all_executables_.insert(e.get());
} }
template <> void PriorityMemoryStrategy<>::clear_handles() { template <>
void PriorityMemoryStrategy<>::clear_handles() {
subscription_handles_.clear(); subscription_handles_.clear();
service_handles_.clear(); service_handles_.clear();
client_handles_.clear(); client_handles_.clear();
@ -164,7 +417,7 @@ template <> void PriorityMemoryStrategy<>::clear_handles() {
} }
template <> template <>
void PriorityMemoryStrategy<>::remove_null_handles(rcl_wait_set_t *wait_set) { void PriorityMemoryStrategy<>::remove_null_handles(rcl_wait_set_t* wait_set) {
// TODO(jacobperron): Check if wait set sizes are what we expect them to be? // TODO(jacobperron): Check if wait set sizes are what we expect them to be?
// e.g. wait_set->size_of_clients == client_handles_.size() // e.g. wait_set->size_of_clients == client_handles_.size()
@ -179,6 +432,7 @@ void PriorityMemoryStrategy<>::remove_null_handles(rcl_wait_set_t *wait_set) {
priority_map[subscription_handles_[i]]->allow_run(); priority_map[subscription_handles_[i]]->allow_run();
} }
} }
for (size_t i = 0; i < service_handles_.size(); ++i) { for (size_t i = 0; i < service_handles_.size(); ++i) {
if (!wait_set->services[i]) { if (!wait_set->services[i]) {
priority_map[service_handles_[i]]->dont_run(); priority_map[service_handles_[i]]->dont_run();
@ -187,6 +441,7 @@ void PriorityMemoryStrategy<>::remove_null_handles(rcl_wait_set_t *wait_set) {
priority_map[service_handles_[i]]->allow_run(); priority_map[service_handles_[i]]->allow_run();
} }
} }
for (size_t i = 0; i < client_handles_.size(); ++i) { for (size_t i = 0; i < client_handles_.size(); ++i) {
if (!wait_set->clients[i]) { if (!wait_set->clients[i]) {
priority_map[client_handles_[i]]->dont_run(); priority_map[client_handles_[i]]->dont_run();
@ -195,6 +450,7 @@ void PriorityMemoryStrategy<>::remove_null_handles(rcl_wait_set_t *wait_set) {
priority_map[client_handles_[i]]->allow_run(); priority_map[client_handles_[i]]->allow_run();
} }
} }
for (size_t i = 0; i < timer_handles_.size(); ++i) { for (size_t i = 0; i < timer_handles_.size(); ++i) {
if (!wait_set->timers[i]) { if (!wait_set->timers[i]) {
priority_map[timer_handles_[i]]->dont_run(); priority_map[timer_handles_[i]]->dont_run();
@ -203,6 +459,7 @@ void PriorityMemoryStrategy<>::remove_null_handles(rcl_wait_set_t *wait_set) {
priority_map[timer_handles_[i]]->allow_run(); priority_map[timer_handles_[i]]->allow_run();
} }
} }
for (size_t i = 0; i < waitable_handles_.size(); ++i) { for (size_t i = 0; i < waitable_handles_.size(); ++i) {
if (!waitable_handles_[i]->is_ready(wait_set)) { if (!waitable_handles_[i]->is_ready(wait_set)) {
priority_map[waitable_handles_[i]]->dont_run(); priority_map[waitable_handles_[i]]->dont_run();
@ -256,33 +513,33 @@ bool PriorityMemoryStrategy<>::collect_entities(
auto subscription_handle = subscription->get_subscription_handle(); auto subscription_handle = subscription->get_subscription_handle();
subscription_handles_.push_back(subscription_handle); subscription_handles_.push_back(subscription_handle);
add_executable_to_queue( add_executable_to_queue(
get_and_reset_priority(subscription_handle, SUBSCRIPTION)); get_and_reset_priority(subscription_handle, ExecutableType::SUBSCRIPTION));
return false; return false;
}); });
group->find_service_ptrs_if( group->find_service_ptrs_if(
[this](const rclcpp::ServiceBase::SharedPtr &service) { [this](const rclcpp::ServiceBase::SharedPtr &service) {
add_executable_to_queue( add_executable_to_queue(
get_and_reset_priority(service->get_service_handle(), SERVICE)); get_and_reset_priority(service->get_service_handle(), ExecutableType::SERVICE));
service_handles_.push_back(service->get_service_handle()); service_handles_.push_back(service->get_service_handle());
return false; return false;
}); });
group->find_client_ptrs_if( group->find_client_ptrs_if(
[this](const rclcpp::ClientBase::SharedPtr &client) { [this](const rclcpp::ClientBase::SharedPtr &client) {
add_executable_to_queue( add_executable_to_queue(
get_and_reset_priority(client->get_client_handle(), CLIENT)); get_and_reset_priority(client->get_client_handle(), ExecutableType::CLIENT));
client_handles_.push_back(client->get_client_handle()); client_handles_.push_back(client->get_client_handle());
return false; return false;
}); });
group->find_timer_ptrs_if( group->find_timer_ptrs_if(
[this](const rclcpp::TimerBase::SharedPtr &timer) { [this](const rclcpp::TimerBase::SharedPtr &timer) {
add_executable_to_queue( add_executable_to_queue(
get_and_reset_priority(timer->get_timer_handle(), TIMER)); get_and_reset_priority(timer->get_timer_handle(), ExecutableType::TIMER));
timer_handles_.push_back(timer->get_timer_handle()); timer_handles_.push_back(timer->get_timer_handle());
return false; return false;
}); });
group->find_waitable_ptrs_if( group->find_waitable_ptrs_if(
[this](const rclcpp::Waitable::SharedPtr &waitable) { [this](const rclcpp::Waitable::SharedPtr &waitable) {
add_executable_to_queue(get_and_reset_priority(waitable, WAITABLE)); add_executable_to_queue(get_and_reset_priority(waitable, ExecutableType::WAITABLE));
waitable_handles_.push_back(waitable); waitable_handles_.push_back(waitable);
return false; return false;
}); });
@ -376,7 +633,7 @@ void PriorityMemoryStrategy<>::get_next_executable(
} }
ExecutableType type = next_exec->type; ExecutableType type = next_exec->type;
switch (type) { switch (type) {
case SUBSCRIPTION: { case ExecutableType::SUBSCRIPTION: {
std::shared_ptr<const rcl_subscription_t> subs_handle = std::shared_ptr<const rcl_subscription_t> subs_handle =
std::static_pointer_cast<const rcl_subscription_t>(next_exec->handle); std::static_pointer_cast<const rcl_subscription_t>(next_exec->handle);
auto subscription = get_subscription_by_handle(subs_handle, weak_nodes); auto subscription = get_subscription_by_handle(subs_handle, weak_nodes);
@ -408,7 +665,7 @@ void PriorityMemoryStrategy<>::get_next_executable(
// subscription->get_topic_name() << std::endl; // subscription->get_topic_name() << std::endl;
} }
} break; } break;
case SERVICE: { case ExecutableType::SERVICE: {
std::shared_ptr<const rcl_service_t> service_handle = std::shared_ptr<const rcl_service_t> service_handle =
std::static_pointer_cast<const rcl_service_t>(next_exec->handle); std::static_pointer_cast<const rcl_service_t>(next_exec->handle);
auto service = get_service_by_handle(service_handle, weak_nodes); auto service = get_service_by_handle(service_handle, weak_nodes);
@ -433,7 +690,7 @@ void PriorityMemoryStrategy<>::get_next_executable(
// service->get_service_name() << std::endl; // service->get_service_name() << std::endl;
} }
} break; } break;
case CLIENT: { case ExecutableType::CLIENT: {
std::shared_ptr<const rcl_client_t> client_handle = std::shared_ptr<const rcl_client_t> client_handle =
std::static_pointer_cast<const rcl_client_t>(next_exec->handle); std::static_pointer_cast<const rcl_client_t>(next_exec->handle);
auto client = get_client_by_handle(client_handle, weak_nodes); auto client = get_client_by_handle(client_handle, weak_nodes);
@ -458,7 +715,7 @@ void PriorityMemoryStrategy<>::get_next_executable(
// client->get_service_name() << std::endl; // client->get_service_name() << std::endl;
} }
} break; } break;
case TIMER: { case ExecutableType::TIMER: {
std::shared_ptr<const rcl_timer_t> timer_handle = std::shared_ptr<const rcl_timer_t> timer_handle =
std::static_pointer_cast<const rcl_timer_t>(next_exec->handle); std::static_pointer_cast<const rcl_timer_t>(next_exec->handle);
auto timer = get_timer_by_handle(timer_handle, weak_nodes); auto timer = get_timer_by_handle(timer_handle, weak_nodes);
@ -487,7 +744,7 @@ void PriorityMemoryStrategy<>::get_next_executable(
any_exec.node_base = get_node_by_group(group, weak_nodes); any_exec.node_base = get_node_by_group(group, weak_nodes);
} }
} break; } break;
case WAITABLE: { case ExecutableType::WAITABLE: {
std::shared_ptr<rclcpp::Waitable> waitable_handle = std::shared_ptr<rclcpp::Waitable> waitable_handle =
std::static_pointer_cast<rclcpp::Waitable>(next_exec->waitable); std::static_pointer_cast<rclcpp::Waitable>(next_exec->waitable);
auto waitable = waitable_handle; auto waitable = waitable_handle;
@ -516,7 +773,7 @@ void PriorityMemoryStrategy<>::get_next_executable(
continue; continue;
// break; // break;
} }
if (next_exec->is_first_in_chain && next_exec->sched_type == DEADLINE) { if (next_exec->is_first_in_chain && next_exec->sched_type == ExecutableScheduleType::DEADLINE) {
// std::cout << "running first in chain deadline" << std::endl; // std::cout << "running first in chain deadline" << std::endl;
} }
/* std::ostringstream oss; /* std::ostringstream oss;
@ -576,7 +833,8 @@ void PriorityMemoryStrategy<>::post_execute(rclcpp::AnyExecutable any_exec,
// callback has executed // callback has executed
// std::cout<< "running callback. first? " << next_exec->is_first_in_chain << // std::cout<< "running callback. first? " << next_exec->is_first_in_chain <<
// " type " << next_exec->sched_type << std::endl; // " type " << next_exec->sched_type << std::endl;
if (next_exec->is_first_in_chain && next_exec->sched_type != DEADLINE) { if (next_exec->is_first_in_chain
&& next_exec->sched_type != ExecutableScheduleType::DEADLINE) {
/* /*
timespec current_time; timespec current_time;
clock_gettime(CLOCK_MONOTONIC_RAW, &current_time); clock_gettime(CLOCK_MONOTONIC_RAW, &current_time);
@ -590,7 +848,8 @@ void PriorityMemoryStrategy<>::post_execute(rclcpp::AnyExecutable any_exec,
std::to_string(time_until_next_call) << std::endl; std::to_string(time_until_next_call) << std::endl;
*/ */
} }
if (next_exec->is_last_in_chain && next_exec->sched_type == DEADLINE) { if (next_exec->is_last_in_chain
&& next_exec->sched_type == ExecutableScheduleType::DEADLINE) {
// did we make the deadline? // did we make the deadline?
timespec current_time; timespec current_time;
clock_gettime(CLOCK_MONOTONIC_RAW, &current_time); clock_gettime(CLOCK_MONOTONIC_RAW, &current_time);
@ -678,8 +937,8 @@ void PriorityMemoryStrategy<>::post_execute(rclcpp::AnyExecutable any_exec,
if (!next_exec->deadlines->empty()) if (!next_exec->deadlines->empty())
next_exec->deadlines->pop_front(); next_exec->deadlines->pop_front();
} }
if (next_exec->sched_type == CHAIN_AWARE_PRIORITY || if (next_exec->sched_type == ExecutableScheduleType::CHAIN_AWARE_PRIORITY
next_exec->sched_type == DEADLINE) { || next_exec->sched_type == ExecutableScheduleType::DEADLINE) {
// this is safe, since we popped it earlier // this is safe, since we popped it earlier
// get a mutable reference // get a mutable reference
// TODO: find a cleaner way to do this // TODO: find a cleaner way to do this

View file

@ -1,10 +1,12 @@
#include <string>
#include <fstream>
#include <unistd.h>
#include <rclcpp/rclcpp.hpp>
#include <std_msgs/msg/string.hpp>
#include "priority_executor/priority_executor.hpp" #include "priority_executor/priority_executor.hpp"
#include "priority_executor/priority_memory_strategy.hpp" #include "priority_executor/priority_memory_strategy.hpp"
#include "rclcpp/rclcpp.hpp"
#include "std_msgs/msg/string.hpp"
#include <fstream>
#include <string>
#include <unistd.h>
// re-create the classic talker-listener example with two listeners // re-create the classic talker-listener example with two listeners
class Talker : public rclcpp::Node class Talker : public rclcpp::Node
@ -53,17 +55,17 @@ private:
} }
}; };
int main(int argc, char **argv) int main(int argc, char* argv[]) {
{
rclcpp::init(argc, argv); rclcpp::init(argc, argv);
auto talker = std::make_shared<Talker>(); auto talker = std::make_shared<Talker>();
auto listener1 = std::make_shared<Listener>("listener1"); auto listener1 = std::make_shared<Listener>("listener1");
auto listener2 = std::make_shared<Listener>("listener2"); auto listener2 = std::make_shared<Listener>("listener2");
rclcpp::ExecutorOptions options; rclcpp::ExecutorOptions options;
auto strategy = std::make_shared<PriorityMemoryStrategy<>>(); auto strategy = std::make_shared<priority_executor::PriorityMemoryStrategy<>>();
options.memory_strategy = strategy; options.memory_strategy = strategy;
auto executor = new timed_executor::TimedExecutor(options); auto executor = new priority_executor::TimedExecutor(options);
// must be set to post_execute can set new deadlines // must be set to post_execute can set new deadlines
executor->prio_memory_strategy_ = strategy; executor->prio_memory_strategy_ = strategy;
@ -72,7 +74,7 @@ int main(int argc, char **argv)
// the new funcitons in PriorityMemoryStrategy accept the handle of the // the new funcitons in PriorityMemoryStrategy accept the handle of the
// timer/subscription as the first argument // timer/subscription as the first argument
strategy->set_executable_deadline(talker->timer_->get_timer_handle(), 1000, strategy->set_executable_deadline(talker->timer_->get_timer_handle(), 1000,
TIMER, 0); priority_executor::ExecutableType::TIMER, 0);
// you _must_ set the timer_handle for each chain // you _must_ set the timer_handle for each chain
strategy->get_priority_settings(talker->timer_->get_timer_handle()) strategy->get_priority_settings(talker->timer_->get_timer_handle())
->timer_handle = talker->timer_; ->timer_handle = talker->timer_;
@ -80,9 +82,9 @@ int main(int argc, char **argv)
strategy->set_first_in_chain(talker->timer_->get_timer_handle()); strategy->set_first_in_chain(talker->timer_->get_timer_handle());
// set the same period and chain_id for each callback in the chain // set the same period and chain_id for each callback in the chain
strategy->set_executable_deadline(listener1->sub_->get_subscription_handle(), strategy->set_executable_deadline(listener1->sub_->get_subscription_handle(),
1000, SUBSCRIPTION, 0); 1000, priority_executor::ExecutableType::SUBSCRIPTION, 0);
strategy->set_executable_deadline(listener2->sub_->get_subscription_handle(), strategy->set_executable_deadline(listener2->sub_->get_subscription_handle(),
1000, SUBSCRIPTION, 0); 1000, priority_executor::ExecutableType::SUBSCRIPTION, 0);
// you _must_ mark the last executable in the chain (used to keep track of different instances of the same chain) // you _must_ mark the last executable in the chain (used to keep track of different instances of the same chain)
strategy->set_last_in_chain(listener2->sub_->get_subscription_handle()); strategy->set_last_in_chain(listener2->sub_->get_subscription_handle());
// add all the nodes to the executor // add all the nodes to the executor
@ -100,6 +102,8 @@ int main(int argc, char **argv)
std::cout << *strategy->get_priority_settings( std::cout << *strategy->get_priority_settings(
listener2->sub_->get_subscription_handle()) listener2->sub_->get_subscription_handle())
<< std::endl; << std::endl;
executor->spin(); executor->spin();
rclcpp::shutdown();
return 0;
} }

View file

@ -1,48 +1,51 @@
cmake_minimum_required(VERSION 3.5) cmake_minimum_required(VERSION 3.8)
project(simple_timer) project(simple_timer VERSION 0.1.0)
# Default to C99 # Set C++ standards
if(NOT CMAKE_C_STANDARD) set(CMAKE_CXX_STANDARD 17)
set(CMAKE_C_STANDARD 99) set(CMAKE_CXX_STANDARD_REQUIRED ON)
endif() set(CMAKE_CXX_EXTENSIONS OFF)
# Default to C++14
if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)
endif()
# Compiler options
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang") if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic) add_compile_options(-Wall -Wextra -Wpedantic)
endif() endif()
# find dependencies # Find dependencies
find_package(ament_cmake REQUIRED) find_package(ament_cmake REQUIRED)
# uncomment the following section in order to fill in find_package(rclcpp REQUIRED)
# further dependencies manually.
# find_package(<dependency> REQUIRED)
add_library(simple_timer src/cycle_timer.cpp src/period_timer.cpp) # Library targets
add_library(simple_timer
src/cycle_timer.cpp
src/period_timer.cpp
)
target_include_directories(simple_timer PUBLIC target_include_directories(simple_timer PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include> $<INSTALL_INTERFACE:include>
) )
add_library(rt-sched src/rt-sched.cpp) ament_target_dependencies(simple_timer
rclcpp
)
add_library(rt-sched
src/rt-sched.cpp
)
target_include_directories(rt-sched PUBLIC target_include_directories(rt-sched PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include> $<INSTALL_INTERFACE:include>
) )
ament_target_dependencies(rt-sched
rclcpp
)
# Testing
if(BUILD_TESTING) if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED) find_package(ament_lint_auto REQUIRED)
# the following line skips the linter which checks for copyrights
# uncomment the line when a copyright and license is not present in all source files
#set(ament_cmake_copyright_FOUND TRUE)
# the following line skips cpplint (only works in a git repo)
# uncomment the line when this package is not in a git repo
#set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies() ament_lint_auto_find_test_dependencies()
endif() endif()
# Installation
install( install(
DIRECTORY include/ DIRECTORY include/
DESTINATION include DESTINATION include
@ -50,12 +53,15 @@ install(
install( install(
TARGETS simple_timer rt-sched TARGETS simple_timer rt-sched
EXPORT export_${PROJECT_NAME}
LIBRARY DESTINATION lib LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib ARCHIVE DESTINATION lib
RUNTIME DESTINATION bin RUNTIME DESTINATION bin
INCLUDES DESTINATION include
) )
# Export and package configuration
ament_export_include_directories(include) ament_export_include_directories(include)
ament_export_libraries(simple_timer) ament_export_targets(export_${PROJECT_NAME} HAS_LIBRARY_TARGET)
ament_export_libraries(rt-sched) ament_export_dependencies(rclcpp)
ament_package() ament_package()

View file

@ -3,21 +3,23 @@
#include <memory> #include <memory>
#include "simple_timer/rt-sched.hpp" #include "simple_timer/rt-sched.hpp"
namespace simple_timer
{ namespace simple_timer {
class CycleTimer
{ class CycleTimer {
public: public:
CycleTimer(long start_delay=0); explicit CycleTimer(long const start_delay = 0);
void tick() ; void tick();
const u64 start_delay_time;
u64 const start_delay_time;
u64 start_time = 0; u64 start_time = 0;
u64 last_cycle_time = 0; u64 last_cycle_time = 0;
unsigned long max_diff = 0; unsigned long max_diff = 0;
unsigned long min_diff = 0; unsigned long min_diff = 0;
unsigned long last_diff = 0; unsigned long last_diff = 0;
bool recording = false; bool recording = false;
}; };
} // namespace simple_timer } // namespace simple_timer
#endif #endif

View file

@ -3,23 +3,24 @@
#include <memory> #include <memory>
#include "simple_timer/rt-sched.hpp" #include "simple_timer/rt-sched.hpp"
namespace simple_timer
{ namespace simple_timer {
class PeriodTimer
{ class PeriodTimer {
public: public:
PeriodTimer(long start_delay = 0); explicit PeriodTimer(long const start_delay = 0);
void start(); void start();
void stop(); void stop();
const u64 start_delay_time;
u64 start_time = 0;
u64 const start_delay_time;
u64 start_time = 0;
u64 last_period_time = 0; u64 last_period_time = 0;
unsigned long max_period = 0; unsigned long max_period = 0;
unsigned long min_period = 0; unsigned long min_period = 0;
unsigned long last_period = 0; unsigned long last_period = 0;
bool recording = false; bool recording = false;
}; };
} // namespace simple_timer } // namespace simple_timer
#endif #endif

View file

@ -47,6 +47,7 @@
typedef unsigned long long u64; typedef unsigned long long u64;
#define NS_TO_MS 1000000 #define NS_TO_MS 1000000
struct sched_attr { struct sched_attr {
uint32_t size; uint32_t size;
uint32_t sched_policy; uint32_t sched_policy;
@ -65,28 +66,26 @@ struct sched_attr {
}; };
int sched_setattr(pid_t pid, int sched_setattr(pid_t pid,
const struct sched_attr *attr, sched_attr const* attr,
unsigned int flags); unsigned int flags);
int sched_getattr(pid_t pid, int sched_getattr(pid_t pid,
struct sched_attr *attr, sched_attr* attr,
unsigned int size, unsigned int size,
unsigned int flags); unsigned int flags);
u64 get_time_us(void); u64 get_time_us(void);
typedef struct node_time_logger typedef struct node_time_logger {
{
std::shared_ptr<std::vector<std::pair<std::string, u64>>> recorded_times; std::shared_ptr<std::vector<std::pair<std::string, u64>>> recorded_times;
} node_time_logger; } node_time_logger;
void log_entry(node_time_logger logger, std::string text); void log_entry(node_time_logger logger, std::string const& text);
node_time_logger create_logger(); node_time_logger create_logger();
inline u64 get_time_us(void) inline u64 get_time_us(void) {
{
struct timespec ts; struct timespec ts;
unsigned long long time; u64 time;
clock_gettime(CLOCK_MONOTONIC_RAW, &ts); clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
time = ts.tv_sec * 1000000; time = ts.tv_sec * 1000000;

View file

@ -2,13 +2,19 @@
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?> <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3"> <package format="3">
<name>simple_timer</name> <name>simple_timer</name>
<version>0.0.0</version> <version>0.1.0</version>
<description>TODO: Package description</description> <description>
<maintainer email="kurt4wilson@gmail.com">nvidia</maintainer> ROS 2 package providing timer functionality for the dynamic executor experiments
<license>TODO: License declaration</license> </description>
<maintainer email="kurt4wilson@gmail.com">kurt</maintainer>
<license>Apache License 2.0</license>
<buildtool_depend>ament_cmake</buildtool_depend> <buildtool_depend>ament_cmake</buildtool_depend>
<!-- Build Dependencies -->
<depend>rclcpp</depend>
<!-- Test Dependencies -->
<test_depend>ament_lint_auto</test_depend> <test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend> <test_depend>ament_lint_common</test_depend>

View file

@ -1,43 +1,34 @@
#include "simple_timer/cycle_timer.hpp" #include "simple_timer/cycle_timer.hpp"
namespace simple_timer namespace simple_timer {
{
CycleTimer::CycleTimer(long start_delay) : start_delay_time(start_delay * 1000)
{
}
void CycleTimer::tick() CycleTimer::CycleTimer(long const start_delay)
{ : start_delay_time(start_delay * 1000) {
u64 current_wall_time = get_time_us(); }
void CycleTimer::tick() {
u64 const current_wall_time = get_time_us();
u64 time_diff = 0; u64 time_diff = 0;
if (!recording) if (!recording) {
{ if (start_time == 0) {
if (start_time == 0)
{
start_time = current_wall_time; start_time = current_wall_time;
} } else if (current_wall_time - start_time > start_delay_time) {
else if (current_wall_time - start_time > start_delay_time)
{
recording = true; recording = true;
last_cycle_time = current_wall_time; last_cycle_time = current_wall_time;
start_time = current_wall_time; start_time = current_wall_time;
} }
} } else {
else
{
time_diff = current_wall_time - last_cycle_time; time_diff = current_wall_time - last_cycle_time;
if (time_diff < min_diff || min_diff == 0) if (time_diff < min_diff || min_diff == 0) {
{
min_diff = time_diff; min_diff = time_diff;
} }
if (time_diff > max_diff || max_diff == 0) if (time_diff > max_diff || max_diff == 0) {
{
max_diff = time_diff; max_diff = time_diff;
} }
last_cycle_time = current_wall_time; last_cycle_time = current_wall_time;
last_diff = time_diff; last_diff = time_diff;
} }
} }
} // namespace simple_timer } // namespace simple_timer

View file

@ -1,56 +1,43 @@
#include "simple_timer/period_timer.hpp" #include "simple_timer/period_timer.hpp"
namespace simple_timer namespace simple_timer {
{
PeriodTimer::PeriodTimer(long start_delay) : start_delay_time(start_delay * 1000)
{
}
void PeriodTimer::start() PeriodTimer::PeriodTimer(long const start_delay)
{ : start_delay_time(start_delay * 1000) {
u64 current_wall_time = get_time_us(); }
if (!recording) void PeriodTimer::start() {
{ u64 const current_wall_time = get_time_us();
if (start_time == 0) if (!recording) {
{ if (start_time == 0) {
start_time = current_wall_time; start_time = current_wall_time;
} } else if (current_wall_time - start_time > start_delay_time) {
else if (current_wall_time - start_time > start_delay_time)
{
recording = true; recording = true;
start_time = current_wall_time; start_time = current_wall_time;
last_period_time = current_wall_time; last_period_time = current_wall_time;
} }
} } else {
else
{
last_period_time = current_wall_time; last_period_time = current_wall_time;
} }
} }
void PeriodTimer::stop()
{ void PeriodTimer::stop() {
u64 current_wall_time = get_time_us(); u64 const current_wall_time = get_time_us();
u64 time_diff = 0; u64 time_diff = 0;
if (!recording) if (!recording) {
{
return; return;
} }
else
{
time_diff = current_wall_time - last_period_time; time_diff = current_wall_time - last_period_time;
if (time_diff < min_period || min_period == 0) if (time_diff < min_period || min_period == 0) {
{
min_period = time_diff; min_period = time_diff;
} }
if (time_diff > max_period || max_period == 0) if (time_diff > max_period || max_period == 0) {
{
max_period = time_diff; max_period = time_diff;
} }
last_period = time_diff; last_period = time_diff;
} }
}
} // namespace simple_timer } // namespace simple_timer

View file

@ -13,37 +13,33 @@
#include <sys/syscall.h> #include <sys/syscall.h>
#include <time.h> #include <time.h>
#include <iostream> #include <iostream>
#include "simple_timer/rt-sched.hpp" #include "simple_timer/rt-sched.hpp"
int sched_setattr(pid_t pid, int sched_setattr(
const struct sched_attr *attr, pid_t pid,
unsigned int flags) sched_attr const* attr,
{ unsigned int flags) {
return syscall(__NR_sched_setattr, pid, attr, flags); return syscall(__NR_sched_setattr, pid, attr, flags);
} }
int sched_getattr(pid_t pid, int sched_getattr(
struct sched_attr *attr, pid_t pid,
sched_attr* attr,
unsigned int size, unsigned int size,
unsigned int flags) unsigned int flags) {
{
return syscall(__NR_sched_getattr, pid, attr, size, flags); return syscall(__NR_sched_getattr, pid, attr, size, flags);
} }
void log_entry(node_time_logger logger, std::string text) void log_entry(node_time_logger logger, std::string const& text) {
{ if (logger.recorded_times != nullptr) {
if (logger.recorded_times != nullptr) logger.recorded_times->emplace_back(text, get_time_us() / 1000);
{
logger.recorded_times->push_back(std::make_pair(text, get_time_us() / 1000));
// std::cout<<text<<std::endl; // std::cout<<text<<std::endl;
}else{ } else {
// TODO: report error // TODO: report error
} }
} }
node_time_logger create_logger() node_time_logger create_logger() {
{
node_time_logger logger; node_time_logger logger;
logger.recorded_times = std::make_shared<std::vector<std::pair<std::string, u64>>>(); logger.recorded_times = std::make_shared<std::vector<std::pair<std::string, u64>>>();
return logger; return logger;