Lots of comments

This commit is contained in:
Jackie Kay 2015-08-26 17:26:25 -07:00
parent 0a72cd7fcb
commit b0a196ee9f
12 changed files with 290 additions and 41 deletions

View file

@ -136,10 +136,11 @@ public:
}
}
/// Add a node to executor, complete the next available unit of work, and remove the node.
/// Add a node to executor, execute the next available unit of work, and remove the node.
/* \param[in] node Shared pointer to the node to add.
* \param[in] timeout How long to wait for work to become available. Negative values cause
* spin_node_once to block indefinitely
* spin_node_once to block indefinitely (the default behavior). A timeout of 0 causes this
* function to be non-blocking.
*/
template<typename T = std::milli>
void spin_node_once(rclcpp::node::Node::SharedPtr & node,
@ -154,7 +155,9 @@ public:
this->remove_node(node, false);
}
// TODO
/// Add a node, complete all immediately available work, and remove the node.
/* \param[in] node Shared pointer to the node to add.
*/
void spin_node_some(rclcpp::node::Node::SharedPtr & node)
{
this->add_node(node, false);
@ -162,7 +165,12 @@ public:
this->remove_node(node, false);
}
// TODO
/// Complete all available queued work without blocking.
/* This function can be overridden. The default implementation is suitable for a
* single-threaded model of execution.
* Adding subscriptions, timers, services, etc. with blocking callbacks will cause this function
* to block (which may have unintended consequences).
*/
virtual void spin_some()
{
while (AnyExecutable::SharedPtr any_exec =
@ -172,8 +180,11 @@ public:
}
}
// TODO
// Support dynamic switching of memory strategy
/// Support dynamic switching of the memory strategy.
/* Switching the memory strategy while the executor is spinning in another threading could have
* unintended consequences.
* \param[in] memory_strategy Shared pointer to the memory strategy to set.
*/
void
set_memory_strategy(memory_strategy::MemoryStrategy::SharedPtr memory_strategy)
{
@ -184,8 +195,10 @@ public:
}
protected:
/// Find the next available executable and do the work associated with it.
// \param[in] any_exec Union structure that can hold any executable type (timer, subscription,
// service, client).
void
// TODO
execute_any_executable(AnyExecutable::SharedPtr & any_exec)
{
if (!any_exec) {
@ -938,8 +951,10 @@ protected:
return any_exec;
}
/// Guard condition for signaling the rmw layer to wake up for special events.
rmw_guard_condition_t * interrupt_guard_condition_;
/// The memory strategy: an interface for handling user-defined memory allocation strategies.
memory_strategy::MemoryStrategy::SharedPtr memory_strategy_;
private:

View file

@ -36,18 +36,24 @@ namespace executors
namespace single_threaded_executor
{
// TODO
/// Single-threaded executor implementation
// This is the default executor created by rclcpp::spin.
class SingleThreadedExecutor : public executor::Executor
{
public:
RCLCPP_SMART_PTR_DEFINITIONS(SingleThreadedExecutor);
/// Default constructor. See the default constructor for Executor.
SingleThreadedExecutor(memory_strategy::MemoryStrategy::SharedPtr ms =
memory_strategy::create_default_strategy())
: executor::Executor(ms) {}
/// Default destrcutor.
virtual ~SingleThreadedExecutor() {}
/// Single-threaded implementation of spin.
// This function will block until work comes in, execute it, and keep blocking.
// It will only be interrupt by a CTRL-C (managed by the global signal handler).
void spin()
{
while (rclcpp::utilities::ok()) {

View file

@ -30,7 +30,11 @@ class Executor;
namespace memory_strategy
{
// TODO
/// Delegate for handling memory allocations while the Executor is executing.
/* By default, the memory strategy dynamically allocates memory for structures that come in from
* the rmw implementation after the executor waits for work, based on the number of entities that
* come through.
*/
class MemoryStrategy
{
@ -38,23 +42,41 @@ class MemoryStrategy
public:
RCLCPP_SMART_PTR_DEFINITIONS(MemoryStrategy);
/// Borrow memory for storing data for subscriptions, services, clients, or guard conditions.
/* The default implementation ignores the handle type and dynamically allocates the memory.
* \param[in] The type of entity that this function is requesting for.
* \param[in] The number of handles to borrow.
* \return Pointer to the allocated handles.
*/
virtual void ** borrow_handles(HandleType type, size_t number_of_handles)
{
(void)type;
return static_cast<void **>(alloc(sizeof(void *) * number_of_handles));
}
/// Return the memory borrowed in borrow_handles.
/* return_handles should always mirror the way memory was borrowed in borrow_handles.
* \param[in] The type of entity that this function is returning.
* \param[in] Pointer to the handles returned.
*/
virtual void return_handles(HandleType type, void ** handles)
{
(void)type;
this->free(handles);
}
/// Provide a newly initialized AnyExecutable object.
// \return Shared pointer to the fresh executable.
virtual executor::AnyExecutable::SharedPtr instantiate_next_executable()
{
return std::make_shared<executor::AnyExecutable>();
}
/// Implementation of a general-purpose allocation function.
/* \param[in] size Number of bytes to allocate.
* \return Pointer to the allocated chunk of memory.
*/
virtual void * alloc(size_t size)
{
if (size == 0) {
@ -63,6 +85,9 @@ public:
return std::malloc(size);
}
/// Implementation of a general-purpose free.
/* \param[in] Pointer to deallocate.
*/
virtual void free(void * ptr)
{
return std::free(ptr);

View file

@ -24,7 +24,8 @@ namespace rclcpp
namespace message_memory_strategy
{
// TODO
/// Default allocation strategy for messages received by subscriptions.
// A message memory strategy must be templated on the type of the subscription it belongs to.
template<typename MessageT>
class MessageMemoryStrategy
{
@ -32,16 +33,21 @@ class MessageMemoryStrategy
public:
RCLCPP_SMART_PTR_DEFINITIONS(MessageMemoryStrategy);
/// Default factory method
static SharedPtr create_default()
{
return SharedPtr(new MessageMemoryStrategy<MessageT>);
}
/// By default, dynamically allocate a new message.
// \return Shared pointer to the new message.
virtual std::shared_ptr<MessageT> borrow_message()
{
return std::shared_ptr<MessageT>(new MessageT);
}
/// Release ownership of the message, which will deallocate it if it has no more owners.
// \param[in] Shared pointer to the message we are returning.
virtual void return_message(std::shared_ptr<MessageT> & msg)
{
msg.reset();

View file

@ -92,11 +92,7 @@ struct function_traits<ReturnTypeT (ClassT::*)(Args ...) const>
: public function_traits<ReturnTypeT(ClassT &, Args ...)>
{};
/* ROS Node Interface.
*
* This is the single point of entry for creating publishers and subscribers.
*/
// TODO
/// Node is the single point of entry for creating publishers and subscribers.
class Node
{
friend class rclcpp::executor::Executor;
@ -104,30 +100,51 @@ class Node
public:
RCLCPP_SMART_PTR_DEFINITIONS(Node);
// TODO: ALL public functions
/* Create a node based on the node name. */
/// Create a new node with the specified name.
/* \param[in] node_name Name of the node.
* \param[in] use_intra_process_comms True to use the optimized intra-process communication
* pipeline to pass messages between nodes in the same process using shared memory.
*/
Node(const std::string & node_name, bool use_intra_process_comms = false);
/* Create a node based on the node name and a rclcpp::context::Context. */
/// Create a node based on the node name and a rclcpp::context::Context.
/* \param[in] node_name Name of the node.
* \param[in] context The context for the node (usually represents the state of a process).
* \param[in] use_intra_process_comms True to use the optimized intra-process communication
* pipeline to pass messages between nodes in the same process using shared memory.
*/
Node(
const std::string & node_name, rclcpp::context::Context::SharedPtr context,
bool use_intra_process_comms = false);
/* Get the name of the node. */
/// Get the name of the node.
// \return The name of the node.
const std::string &
get_name() const {return name_; }
/* Create and return a callback group. */
/// Create and return a callback group.
rclcpp::callback_group::CallbackGroup::SharedPtr
create_callback_group(rclcpp::callback_group::CallbackGroupType group_type);
/* Create and return a Publisher. */
/// Create and return a Publisher.
/* \param[in] topic_name The topic for this publisher to publish on.
* \param[in] qos_profile The quality of service profile to pass on to the rmw implementation.
* \return Shared pointer to the created publisher.
*/
template<typename MessageT>
rclcpp::publisher::Publisher::SharedPtr
create_publisher(
const std::string & topic_name, const rmw_qos_profile_t & qos_profile);
/* Create and return a Subscription. */
/// Create and return a Subscription.
/* \param[in] topic_name The topic to subscribe on.
* \param[in] qos_profile The quality of service profile to pass on to the rmw implementation.
* \param[in] callback The user-defined callback function.
* \param[in] group The callback group for this subscription. NULL for no callback group.
* \param[in] ignore_local_publications True to ignore local publications.
* \param[in] msg_mem_strat The message memory strategy to use for allocating messages.
* \return Shared pointer to the created subscription.
*/
/* TODO(jacquelinekay):
Windows build breaks when static member function passed as default
argument to msg_mem_strat, nullptr is a workaround.
@ -143,13 +160,22 @@ public:
typename rclcpp::message_memory_strategy::MessageMemoryStrategy<MessageT>::SharedPtr
msg_mem_strat = nullptr);
/* Create a timer. */
/// Create a timer.
/* \param[in] period Time interval between triggers of the callback.
* \param[in] callback User-defined callback function.
* \param[in] group Callback group to execute this timer's callback in.
*/
rclcpp::timer::WallTimer::SharedPtr
create_wall_timer(
std::chrono::nanoseconds period,
rclcpp::timer::CallbackType callback,
rclcpp::callback_group::CallbackGroup::SharedPtr group = nullptr);
/// Create a timer with a sub-nanosecond precision update period.
/* \param[in] period Time interval between triggers of the callback.
* \param[in] callback User-defined callback function.
* \param[in] group Callback group to execute this timer's callback in.
*/
rclcpp::timer::WallTimer::SharedPtr
create_wall_timer(
std::chrono::duration<long double, std::nano> period,

View file

@ -39,15 +39,22 @@ class Node;
namespace publisher
{
// TODO
/// A publisher publishes messages of any type to a topic.
class Publisher
{
friend rclcpp::node::Node;
// TODO
public:
RCLCPP_SMART_PTR_DEFINITIONS(Publisher);
/// Default constructor.
/* Typically, a publisher is not created through this method, but instead is created through a
* call to `Node::create_publisher`.
* \param[in] node_handle The corresponding rmw representation of the owner node.
* \param[in] publisher_handle The rmw publisher handle corresponding to this publisher.
* \param[in] topic The topic that this publisher publishes on.
* \param[in] queue_size The maximum number of unpublished messages to queue.
*/
Publisher(
std::shared_ptr<rmw_node_t> node_handle,
rmw_publisher_t * publisher_handle,
@ -67,6 +74,7 @@ public:
}
}
/// Default destructor.
virtual ~Publisher()
{
if (intra_process_publisher_handle_) {
@ -87,6 +95,10 @@ public:
}
}
/// Send a message to the topic for this publisher.
/* This function is templated on the input message type, MessageT.
* \param[in] msg A shared pointer to the message to send.
*/
template<typename MessageT>
void
publish(std::shared_ptr<MessageT> & msg)
@ -114,36 +126,54 @@ public:
}
}
/// Get the topic that this publisher publishes on.
// \return The topic name.
const std::string &
get_topic_name() const
{
return topic_;
}
/// Get the queue size for this publisher.
// \return The queue size.
size_t
get_queue_size() const
{
return queue_size_;
}
/// Get the global identifier for this publisher (used in rmw and by DDS).
// \return The gid.
const rmw_gid_t &
get_gid() const
{
return rmw_gid_;
}
/// Get the global identifier for this publisher used by intra-process communication.
// \return The intra-process gid.
const rmw_gid_t &
get_intra_process_gid() const
{
return intra_process_rmw_gid_;
}
/// Compare this publisher to a gid.
/* Note that this function calls the next function.
* \param[in] gid Reference to a gid.
* \return True if the publisher's gid matches the input.
*/
bool
operator==(const rmw_gid_t & gid) const
{
return *this == &gid;
}
/// Compare this publisher to a pointer gid.
/* A wrapper for comparing this publisher's gid to the input using rmw_compare_gids_equal.
* \param[in] gid A pointer to a gid.
* \return True if this publisher's gid matches the input.
*/
bool
operator==(const rmw_gid_t * gid) const
{

View file

@ -51,6 +51,8 @@ operator"" _ns(long double ns)
std::chrono::duration<long double, std::nano>(ns));
}
// Namespace escalations.
// For example, this next line escalates type "rclcpp:node::Node" to "rclcpp::Node"
using rclcpp::node::Node;
using rclcpp::publisher::Publisher;
using rclcpp::subscription::SubscriptionBase;
@ -66,12 +68,16 @@ using rclcpp::utilities::shutdown;
using rclcpp::utilities::init;
using rclcpp::utilities::sleep_for;
/// Create a default single-threaded executor and execute any immediately available work.
// \param[in] node_ptr Shared pointer to the node to spin.
void spin_some(Node::SharedPtr & node_ptr)
{
rclcpp::executors::SingleThreadedExecutor executor;
executor.spin_node_some(node_ptr);
}
/// Create a default single-threaded executor and spin the specified node.
// \param[in] node_ptr Shared pointer to the node to spin.
void spin(Node::SharedPtr & node_ptr)
{
rclcpp::executors::SingleThreadedExecutor executor;

View file

@ -25,7 +25,12 @@ namespace strategies
namespace message_pool_memory_strategy
{
// TODO
/// Completely static memory allocation strategy for messages.
/* Templated on the type of message pooled by this class and the size of the message pool.
* Templating allows the program to determine the memory required for this object at compile time.
* The size of the message pool should be at least the largest number of concurrent accesses to
* the subscription (usually the number of threads).
*/
template<typename MessageT, size_t Size,
typename std::enable_if<rosidl_generator_traits::has_fixed_size<MessageT>::value>::type * =
nullptr>
@ -34,6 +39,8 @@ class MessagePoolMemoryStrategy
{
public:
RCLCPP_SMART_PTR_DEFINITIONS(MessagePoolMemoryStrategy);
/// Default constructor
MessagePoolMemoryStrategy()
: next_array_index_(0)
{
@ -43,6 +50,11 @@ public:
}
}
/// Borrow a message from the message pool.
/* Manage the message pool ring buffer.
* Throw an exception if the next message was not available.
* \return Shared pointer to the borrowed message.
*/
std::shared_ptr<MessageT> borrow_message()
{
size_t current_index = next_array_index_;
@ -57,6 +69,10 @@ public:
return pool_[current_index].msg_ptr_;
}
/// Return a message to the message pool.
/* Manage metadata in the message pool ring buffer to release the message.
* \param[in] msg Shared pointer to the message to return.
*/
void return_message(std::shared_ptr<MessageT> & msg)
{
for (size_t i = 0; i < Size; ++i) {

View file

@ -27,7 +27,8 @@ namespace memory_strategies
namespace static_memory_strategy
{
// TODO
/// Representation of the upper bounds on the memory pools managed by StaticMemoryStrategy.
struct ObjectPoolBounds
{
public:
@ -38,41 +39,68 @@ public:
size_t max_guard_conditions;
size_t pool_size;
/// Default constructor attempts to set reasonable default limits on the fields.
ObjectPoolBounds()
: max_subscriptions(10), max_services(10), max_clients(10),
max_executables(1), max_guard_conditions(2), pool_size(1024)
{}
// Setters implement named parameter idiom/method chaining
/// Set the maximum number of subscriptions.
/* \param[in] subscriptions Maximum number of subscriptions.
* \return Reference to this object, for method chaining.
*/
ObjectPoolBounds & set_max_subscriptions(size_t subscriptions)
{
max_subscriptions = subscriptions;
return *this;
}
/// Set the maximum number of services.
/* \param[in] services Maximum number of services.
* \return Reference to this object, for method chaining.
*/
ObjectPoolBounds & set_max_services(size_t services)
{
max_services = services;
return *this;
}
/// Set the maximum number of clients.
/* \param[in] clients Maximum number of clients.
* \return Reference to this object, for method chaining.
*/
ObjectPoolBounds & set_max_clients(size_t clients)
{
max_clients = clients;
return *this;
}
/// Set the maximum number of guard conditions.
/* \param[in] guard conditions Maximum number of guard conditions.
* \return Reference to this object, for method chaining.
*/
ObjectPoolBounds & set_max_guard_conditions(size_t guard_conditions)
{
max_guard_conditions = guard_conditions;
return *this;
}
/// Set the maximum number of executables.
/* \param[in] executables Maximum number of executables.
* \return Reference to this object, for method chaining.
*/
ObjectPoolBounds & set_max_executables(size_t executables)
{
max_executables = executables;
return *this;
}
/// Set the maximum memory pool size.
/* \param[in] executables Maximum memory pool size.
* \return Reference to this object, for method chaining.
*/
ObjectPoolBounds & set_memory_pool_size(size_t pool)
{
pool_size = pool;
@ -81,10 +109,19 @@ public:
};
// TODO
/// Static memory allocation alternative to the default memory strategy.
/* The name is a bit of a misnomer. The memory managed by this class is actually allocated
* dynamically in the constructor, but no subsequent accesses to the class (besides the destructor)
* allocate or free memory.
* StaticMemoryStrategy puts a hard limit on the number of subscriptions, etc. that can be executed
* in one iteration of `Executor::spin`. Thus it allows for memory allocation optimization for
* situations where a limit on the number of such entities is known.
*/
class StaticMemoryStrategy : public memory_strategy::MemoryStrategy
{
public:
/// Default constructor.
// \param[in] bounds Representation of the limits on memory managed by this class.
StaticMemoryStrategy(ObjectPoolBounds bounds = ObjectPoolBounds())
: bounds_(bounds), memory_pool_(nullptr), subscription_pool_(nullptr),
service_pool_(nullptr), guard_condition_pool_(nullptr), executable_pool_(nullptr)
@ -132,6 +169,7 @@ public:
}
}
/// Default destructor. Free all allocated memory.
~StaticMemoryStrategy()
{
if (bounds_.pool_size) {
@ -151,6 +189,11 @@ public:
}
}
/// Borrow handles by returning a pointer to the preallocated object pool for the specified type.
/* \param[in] The type of entity that this function is requesting for.
* \param[in] The number of handles to borrow.
* \return Pointer to the allocated handles.
*/
void ** borrow_handles(HandleType type, size_t number_of_handles)
{
switch (type) {
@ -184,6 +227,10 @@ public:
throw std::runtime_error("Unrecognized enum, could not borrow handle memory.");
}
/// Return the borrowed handles by clearing the object pool for the correspondign type.
/* \param[in] The type of entity that this function is returning.
* \param[in] Pointer to the handles returned.
*/
void return_handles(HandleType type, void ** handles)
{
(void)handles;
@ -213,10 +260,12 @@ public:
}
}
/// Instantiate the next executable by borrowing space from the preallocated executables pool.
// \return Shared pointer to the executable.
executor::AnyExecutable::SharedPtr instantiate_next_executable()
{
if (exec_seq_ >= bounds_.max_executables) {
// wrap around
// wrap around (ring buffer logic)
exec_seq_ = 0;
}
size_t prev_exec_seq_ = exec_seq_;
@ -226,6 +275,7 @@ public:
throw std::runtime_error("Executable pool member was NULL");
}
// Make sure to clear the executable fields.
executable_pool_[prev_exec_seq_]->subscription.reset();
executable_pool_[prev_exec_seq_]->timer.reset();
executable_pool_[prev_exec_seq_]->service.reset();
@ -236,6 +286,10 @@ public:
return executable_pool_[prev_exec_seq_];
}
/// General allocate: reserve space in the memory pool reserved by this function.
/* \param[in] size Number of bytes to allocate.
* \return Pointer to the allocated chunk of memory.
*/
void * alloc(size_t size)
{
// Extremely naive static allocation strategy
@ -255,6 +309,9 @@ public:
return memory_pool_[prev_pool_seq];
}
/// Release the allocated memory in the memory pool.
/* \param[in] Pointer to deallocate.
*/
void free(void * ptr)
{
if (memory_map_.count(ptr) == 0) {

View file

@ -45,14 +45,20 @@ class Node;
namespace subscription
{
/// Virtual base class for subscriptions. This pattern allows us to iterate over different template
/// specializations of Subscription, among other things.
class SubscriptionBase
{
friend class rclcpp::executor::Executor;
// TODO
public:
RCLCPP_SMART_PTR_DEFINITIONS_NOT_COPYABLE(SubscriptionBase);
/// Default constructor.
/* \param[in] node_handle The rmw representation of the node that owns this subscription.
* \param[in] topic_name Name of the topic to subscribe to.
* \param[in] ignore_local_publications True to ignore local publications (unused).
*/
SubscriptionBase(
std::shared_ptr<rmw_node_t> node_handle,
rmw_subscription_t * subscription_handle,
@ -68,6 +74,7 @@ public:
(void)ignore_local_publications_;
}
/// Default destructor.
virtual ~SubscriptionBase()
{
if (subscription_handle_) {
@ -89,14 +96,26 @@ public:
}
}
/// Get the topic that this subscription is subscribed on.
const std::string & get_topic_name() const
{
return this->topic_name_;
}
/// Borrow a new message.
// \return Shared pointer to the fresh message.
virtual std::shared_ptr<void> create_message() = 0;
/// Check if we need to handle the message, and execute the callback if we do.
/* \param[in] message Shared pointer to the message to handle.
* \param[in] sender_id Global identifier of the entity that sent this message.
*/
virtual void handle_message(std::shared_ptr<void> & message, const rmw_gid_t * sender_id) = 0;
/// Return the message borrowed in create_message.
// \param[in] Shared pointer to the returned message.
virtual void return_message(std::shared_ptr<void> & message) = 0;
virtual void handle_intra_process_message(rcl_interfaces::msg::IntraProcessMessage & ipm) = 0;
protected:
@ -114,17 +133,25 @@ private:
};
// TODO
/// Subscription implementation, templated on the type of message this subscription receives.
template<typename MessageT>
class Subscription : public SubscriptionBase
{
friend class rclcpp::node::Node;
// TODO
public:
using CallbackType = std::function<void(const std::shared_ptr<MessageT> &)>;
RCLCPP_SMART_PTR_DEFINITIONS(Subscription);
/// Default constructor.
/* The constructor for a subscription is almost never called directly. Instead, subscriptions
* should be instantiated through Node::create_subscription.
* \param[in] node_handle rmw representation of the node that owns this subscription.
* \param[in] topic_name Name of the topic to subscribe to.
* \param[in] ignore_local_publications True to ignore local publications (unused).
* \param[in] callback User-defined callback to call when a message is received.
* \param[in] memory_strategy The memory strategy to be used for managing message memory.
*/
Subscription(
std::shared_ptr<rmw_node_t> node_handle,
rmw_subscription_t * subscription_handle,
@ -140,14 +167,21 @@ public:
matches_any_intra_process_publishers_(nullptr)
{}
/// Support dynamically setting the message memory strategy.
/* Behavior may be undefined if called while the subscription could be executing.
* \param[in] message_memory_strategy Shared pointer to the memory strategy to set.
*/
void set_message_memory_strategy(
typename message_memory_strategy::MessageMemoryStrategy<MessageT>::SharedPtr message_memory_strategy)
{
message_memory_strategy_ = message_memory_strategy;
}
std::shared_ptr<void> create_message()
{
/* The default message memory strategy provides a dynamically allocated message on each call to
* create_message, though alternative memory strategies that re-use a preallocated message may be
* used (see rclcpp/strategies/message_pool_memory_strategy.hpp).
*/
return message_memory_strategy_->borrow_message();
}

View file

@ -66,12 +66,20 @@ public:
this->canceled_ = true;
}
/// Check how long the timer has until its next scheduled callback.
// \return A std::chrono::duration representing the relative time until the next callback.
virtual std::chrono::nanoseconds
time_until_trigger() = 0;
/// Is the clock steady (i.e. is the time between ticks constant?)
// \return True if the clock used by this timer is steady.
virtual bool is_steady() = 0;
// Interface for externally triggering the timer event
/// Check if the timer needs to trigger the callback.
/* This function expects its caller to immediately trigger the callback after this function,
* since it maintains the last time the callback was triggered.
* \return True if the timer needs to trigger.
*/
virtual bool check_and_trigger() = 0;
protected:
@ -82,7 +90,7 @@ protected:
};
// TODO
/// Generic timer templated on the clock type. Periodically executes a user-specified callback.
template<class Clock = std::chrono::high_resolution_clock>
class GenericTimer : public TimerBase
{
@ -91,6 +99,10 @@ class GenericTimer : public TimerBase
public:
RCLCPP_SMART_PTR_DEFINITIONS(GenericTimer);
/// Default constructor.
/* \param[in] period The interval at which the timer fires.
* \param[in] callback User-specified callback function.
*/
GenericTimer(std::chrono::nanoseconds period, CallbackType callback)
: TimerBase(period, callback), loop_rate_(period)
{
@ -99,12 +111,13 @@ public:
last_triggered_time_ = Clock::now() - period;
}
/// Default destructor.
virtual ~GenericTimer()
{
// Stop the timer from running.
cancel();
}
// return: true to trigger callback on the next "execute_timer" call in executor
bool
check_and_trigger()
{

View file

@ -38,10 +38,14 @@
namespace
{
/// Represent the status of the global interrupt signal.
volatile sig_atomic_t g_signal_status = 0;
/// Guard condition for interrupting the rmw implementation when the global interrupt signal fired.
rmw_guard_condition_t * g_sigint_guard_cond_handle = \
rmw_create_guard_condition();
/// Condition variable for timed sleep (see sleep_for).
std::condition_variable g_interrupt_condition_variable;
/// Mutex for protecting the global condition variable.
std::mutex g_interrupt_mutex;
#ifdef HAS_SIGACTION
@ -50,6 +54,9 @@ struct sigaction old_action;
void (* old_signal_handler)(int) = 0;
#endif
/// When the interrupt signal fires, the signal handler notifies the condition variable to wake up
/// and triggers the interrupt guard condition, so that all global threads managed by rclcpp
/// are interrupted.
void
#ifdef HAS_SIGACTION
signal_handler(int signal_value, siginfo_t * siginfo, void * context)
@ -98,7 +105,10 @@ RMW_THREAD_LOCAL size_t thread_id = 0;
namespace utilities
{
// TODO
/// Initialize communications via the rmw implementation and set up a global signal handler.
/* \param[in] argc Number of arguments.
* \param[in] argv Argument vector. Will eventually be used for passing options to rclcpp.
*/
void
init(int argc, char * argv[])
{
@ -139,14 +149,15 @@ init(int argc, char * argv[])
}
}
// TODO
/// Check rclcpp's status.
// \return True if SIGINT hasn't fired yet, false otherwise.
bool
ok()
{
return ::g_signal_status == 0;
}
// TODO
/// Notify the signal handler and rmw that rclcpp is shutting down.
void
shutdown()
{
@ -160,13 +171,17 @@ shutdown()
}
/// Get a handle to the rmw guard condition that manages the signal handler.
rmw_guard_condition_t *
get_global_sigint_guard_condition()
{
return ::g_sigint_guard_cond_handle;
}
// TODO
/// Use the global condition variable to block for the specified amount of time.
/* \param[in] nanoseconds A std::chrono::duration representing how long to sleep for.
* \return True if the condition variable did not timeout.
*/
bool
sleep_for(const std::chrono::nanoseconds & nanoseconds)
{