{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import json\n", "\n", "import matplotlib.pyplot as plt\n", "from dataclasses import dataclass\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "this_dir = os.path.dirname(os.path.abspath(''))\n", "# results is in \"../results\"\n", "results_dir = os.path.join(this_dir, \"results\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "experiment_folder = \"casestudy_example\"\n", "experiment_name = \"cs_example_edf\"\n", "\n", "experiment_file = os.path.join(results_dir, experiment_folder, experiment_name + \".json\")\n", "if not os.path.exists(experiment_file):\n", " print(\"Experiment file not found: \", experiment_file)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "with open(experiment_file) as f:\n", " experiment_data_raw = json.load(f)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of records: 11755\n", "First record: {'entry': {'operation': 'start_work', 'chain': 0, 'node': 'node_0', 'count': 500, 'next_release_us': 99884}, 'time': 0.0001}\n", "Operation types: ['wait_for_work', 'next_deadline', 'end_work', 'get_next_executable', 'start_work']\n" ] } ], "source": [ "def pre_process_data(data):\n", " for record in data:\n", " record[\"time\"] = int(record[\"time\"])\n", "\n", " min_time = min([record[\"time\"] for record in data])\n", " for record in data:\n", " record[\"time\"] -= min_time\n", " record[\"time\"] /= (1000 * 1000)\n", "\n", " if record[\"entry\"][\"operation\"] == \"next_deadline\":\n", " #print(\"Record: \", record)\n", " record[\"entry\"][\"deadline\"] = int(record[\"entry\"][\"deadline\"])\n", " record[\"entry\"][\"deadline\"] -= min_time\n", " record[\"entry\"][\"deadline\"] /= (1000 * 1000)\n", "\n", " # data = sorted(data, key=lambda x: x[\"time\"])\n", " return data\n", "\n", "experiment_data = pre_process_data(experiment_data_raw)\n", "\n", "print(\"Number of records: \", len(experiment_data))\n", "print(\"First record: \", experiment_data[0])\n", "operation_types = list(set([record[\"entry\"][\"operation\"] for record in experiment_data]))\n", "print(\"Operation types: \", operation_types)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "@dataclass\n", "class Record:\n", " start_time: float\n", " end_time: float\n", " node_name: str\n", "\n", "@dataclass\n", "class RecordLine:\n", " node_name: str\n", " count: int\n", "\n", " def __eq__(self, other):\n", " return self.node_name == other.node_name and self.count == other.count\n", "\n", " def __hash__(self):\n", " return hash((self.node_name, self.count))\n", "\n", "def get_records(data) -> list[Record]:\n", " # used to match start_work and end_work records\n", " current_records: dict[RecordLine, Record] = {}\n", " records = []\n", " for record in data:\n", " if record[\"entry\"][\"operation\"] == \"start_work\":\n", " current_record = Record(start_time=record[\"time\"], node_name=record[\"entry\"][\"node\"], end_time=None)\n", " current_record_line = RecordLine(node_name=record[\"entry\"][\"node\"], count=record[\"entry\"][\"count\"])\n", " if current_record_line in current_records:\n", " raise Exception(\"Overlapping records\")\n", " current_records[current_record_line] = current_record\n", " elif record[\"entry\"][\"operation\"] == \"end_work\":\n", " current_record_line = RecordLine(node_name=record[\"entry\"][\"node\"], count=record[\"entry\"][\"count\"])\n", " if current_record_line not in current_records:\n", " raise Exception(\"No start record\")\n", " current_record = current_records[current_record_line]\n", " current_record.end_time = record[\"time\"]\n", " records.append(current_record)\n", " del current_records[current_record_line]\n", " return records\n", "\n", "records = get_records(experiment_data)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of nodes: 4\n" ] } ], "source": [ "num_nodes = len(set([record.node_name for record in records]))\n", "print(\"Number of nodes: \", num_nodes)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f4ac2c553514434b9f1980bd9bc391d7", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJNtJREFUeJzt3Xtw1eWd+PHP4WJAIMHomsuaWhBbwAnaFUXUEVwzbtidkdl2G9phvOxEu+JusXUr1pkFgsVo1U7Z0bqr0FWcYVfZWWedsZ210W3ZTheiuLJVSDsaqNBSYCtC1JZ4yff3h8P5kcolyDknl+f1mjlDkvOc5/t8nxOS93zDCbksy7IAACAZw/p7AQAAlJYABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIzIj+XsBg1tPTEzt37oxx48ZFLpfr7+UAAH2QZVm89dZbUVtbG8OGpXktTACegJ07d0ZdXV1/LwMA+Bh27NgRZ5xxRn8vo18IwBMwbty4iPjwE6i8vLyfVwMA9EVXV1fU1dXlv4+nSACegIM/9i0vLxeAADDIpPzPt9L8wTcAQMIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGJG9PcCOLZc7sM/s+zo9x90pHF9mauQYwbz8Qo5V3+t6Wjj+jLm0LGlPL9S7cHxznWsdfXFQPt8KeQ+9XXcQP58KfX59WXcYPz7UOjPK4rDFUAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAyaAGxpaYnzzjuvv5cBADDoDZoALLSrrroqPvGJT8SoUaOipqYmrr766ti5c2d/LwsAoOiSDcDLL7881q5dGz//+c/j3/7t36KzszP+4i/+or+XBQBQdEUJwNmzZ8fChQtj0aJFUVlZGdXV1dHS0pK/f/v27TF37twYO3ZslJeXR1NTU+zevbvXHHfffXdUVVXFuHHjorm5OQ4cOPCR46xatSqmTJkSo0aNismTJ8eDDz7Y5zV+9atfjYsuuijOPPPMuPjii+PrX/96bNiwId57772Pfd4AAINB0a4Arl69OsaMGRPt7e1xzz33xB133BFtbW3R09MTc+fOjb1798a6deuira0ttm7dGvPmzcs/du3atdHS0hKtra2xcePGqKmp+UjcrVmzJpYsWRJ33nlndHR0RGtrayxevDhWr1593Gvdu3dvrFmzJi6++OIYOXLkCZ87AMBAlsuyLCv0pLNnz44PPvggfvzjH+c/duGFF8Yf//EfxxVXXBFz5syJbdu2RV1dXUREbNmyJc4555x4/vnn44ILLoiLL744PvOZz8R3vvOd/OMvuuiiOHDgQGzatCkiIiZNmhTf+MY34otf/GJ+zPLly+P73/9+/Pd//3ef1nnbbbfFAw88EL/97W/joosuiqeffjpOPfXUI47v7u6O7u7u/PtdXV1RV1cX+/fvj/Ly8j4d8+PI5T7880jP1MH7DzraM3qsuQo5ZjAfr5Bz9deajjauL2MOHVvK8yvVHhzvXIX4SjnQPl8KuU99HTeQP19KfX59GTcY/z4U+vOqGLq6uqKioqLo378HsqJdAZw2bVqv92tqamLPnj3R0dERdXV1+fiLiJg6dWqMHz8+Ojo6IiKio6MjZsyY0evxM2fOzL/9zjvvRGdnZzQ3N8fYsWPzt+XLl0dnZ2ef13jrrbfGSy+9FD/4wQ9i+PDhcc0118TReviuu+6KioqK/O3QcwAAGCxGFGvi3/9Rai6Xi56enoLM/fbbb0dExMqVKz8SisOHD+/zPKeddlqcdtpp8alPfSqmTJkSdXV1sWHDhl6xeajbb789brnllvz7B68AAgAMJkULwCOZMmVK7NixI3bs2NHrR8D79u2LqVOn5se0t7fHNddck3/chg0b8m9XVVVFbW1tbN26NebPn1+QdR2M00N/xPv7ysrKoqysrCDHAwDoLyUPwIaGhqivr4/58+fHihUr4v3334+bbropZs2aFdOnT4+IiJtvvjmuu+66mD59elxyySWxZs2a2Lx5c0ycODE/z7Jly2LhwoVRUVERjY2N0d3dHRs3bow333yz11W6w2lvb48XXnghLr300jjllFOis7MzFi9eHGedddYRr/4BAAwVJf89gLlcLp566qk45ZRT4rLLLouGhoaYOHFiPPHEE/kx8+bNi8WLF8eiRYvi/PPPj9dffz0WLFjQa57rr78+Vq1aFY888kjU19fHrFmz4tFHH40JEyYccw0nn3xyPPnkk3HFFVfEpz/96Whubo5p06bFunXrXOEDAIa8orwKOBWlehWRVwF7FfDHmeto47wK+Pjn8irggfV35uC4wfw1oS/jBuPfB68CHhyS/Z9AAABSNSQDsLW1tdevhzn0NmfOnP5eHgBAvyr5i0BK4cYbb4ympqbD3jd69OgSrwYAYGAZkgFYWVkZlZWV/b0MAIABaUj+CBgAgCMTgAAAiRGAAACJEYAAAIkRgAAAiRGAAACJEYAAAIkRgAAAiRGAAACJEYAAAIkRgAAAiRGAAACJEYAAAIkRgAAAiRGAAACJEYAAAIkRgAAAiRGAAACJEYAAAIkRgAAAiRGAAACJEYAAAIkRgAAAiRGAAACJEYAAAIkZ0d8L4Niy7MTuP96xhRozmI9XyLkG65r6OnYwn1+h96pUxyvU+RVyn/o6biA+f443cI9H8bgCCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYATiA5XIf3o41ppBzFWLMUDheqdY+kPezVGsq5FyOd3xzFWKe4zneUN9Pxyv91w4+PgEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkJhBE4AtLS1x3nnn9fcyAAAGvUETgIX0i1/8Ipqbm2PChAkxevToOOuss2Lp0qXx7rvv9vfSAACKbkR/L6A//OxnP4uenp546KGHYtKkSfHKK6/EDTfcEO+8807cd999/b08AICiKsoVwNmzZ8fChQtj0aJFUVlZGdXV1dHS0pK/f/v27TF37twYO3ZslJeXR1NTU+zevbvXHHfffXdUVVXFuHHjorm5OQ4cOPCR46xatSqmTJkSo0aNismTJ8eDDz7Yp/U1NjbGI488EldeeWVMnDgxrrrqqvja174WTz755AmdNwDAYFC0HwGvXr06xowZE+3t7XHPPffEHXfcEW1tbdHT0xNz586NvXv3xrp166KtrS22bt0a8+bNyz927dq10dLSEq2trbFx48aoqan5SNytWbMmlixZEnfeeWd0dHREa2trLF68OFavXv2x1rt///6orKw86pju7u7o6urqdQMAGHSyIpg1a1Z26aWX9vrYBRdckN12223ZD37wg2z48OHZ9u3b8/dt3rw5i4js+eefz7Isy2bOnJnddNNNvR4/Y8aM7Nxzz82/f9ZZZ2X//M//3GvMN77xjWzmzJnHvd5XX301Ky8vzx5++OGjjlu6dGkWER+57d+//7iP2RcRH96ONaaQcxVizFA4XqnWPpD3s1RrKuRcjnd8cxVinuM53lDfT8cr/deOj2v//v1F/f49GBTtCuC0adN6vV9TUxN79uyJjo6OqKuri7q6uvx9U6dOjfHjx0dHR0dERHR0dMSMGTN6PX7mzJn5t995553o7OyM5ubmGDt2bP62fPny6OzsPK51/upXv4rGxsb4/Oc/HzfccMNRx95+++2xf//+/G3Hjh3HdSwAgIGgaC8CGTlyZK/3c7lc9PT0FGTut99+OyIiVq5c+ZFQHD58eJ/n2blzZ1x++eVx8cUXx8MPP3zM8WVlZVFWVnZ8iwUAGGBK/mtgpkyZEjt27Oh19WzLli2xb9++mDp1an5Me3t7r8dt2LAh/3ZVVVXU1tbG1q1bY9KkSb1uEyZM6NM6fvWrX8Xs2bPj/PPPj0ceeSSGDUvyN+IAAAkq+a+BaWhoiPr6+pg/f36sWLEi3n///bjpppti1qxZMX369IiIuPnmm+O6666L6dOnxyWXXBJr1qyJzZs3x8SJE/PzLFu2LBYuXBgVFRXR2NgY3d3dsXHjxnjzzTfjlltuOeoaDsbfmWeeGffdd1/83//9X/6+6urq4pw4AMAAUfIAzOVy8dRTT8WXv/zluOyyy2LYsGHR2NgY999/f37MvHnzorOzMxYtWhQHDhyIz33uc7FgwYJ45pln8mOuv/76OPnkk+Pee++NW2+9NcaMGRP19fXxla985ZhraGtri9deey1ee+21OOOMM3rdl2VZwc4VAGAgymWK52Pr6uqKioqK2L9/f5SXlxd8/lzuwz+P9gzlcke//3jnKsSYoXC8Qs41EM+vL8cr1ZoKOZfjHd9chZjneI5XiDGO53iFUOzv34OBf/gGAJCYIRmAra2tvX49zKG3OXPm9PfyAAD61ZD8v4BvvPHGaGpqOux9o0ePLvFqAAAGliEZgJWVlcf8b90AAFI1JH8EDADAkQlAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxIzo7wVwZFlWmDGFnMvxHM/xHM/xHG8gHI8T4wogAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiRvT3Aji2XO7DP7Ps6PcfdKRxfZmrkGMG8/EKOdfxjsnljv1c92Wuo43ry5hDx5by+Svk81KIdfV17QfHDqa/f4Xcp4PjSvn89cVA/vwcSF+DBurxKB5XAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASM2gCsKWlJc4777z+XgYAwKA3aAKw0O688864+OKL4+STT47x48f393IAAEom2QB899134/Of/3wsWLCgv5cCAFBSRQnA2bNnx8KFC2PRokVRWVkZ1dXV0dLSkr9/+/btMXfu3Bg7dmyUl5dHU1NT7N69u9ccd999d1RVVcW4ceOiubk5Dhw48JHjrFq1KqZMmRKjRo2KyZMnx4MPPtjnNS5btiy++tWvRn19/cc+TwCAwahoVwBXr14dY8aMifb29rjnnnvijjvuiLa2tujp6Ym5c+fG3r17Y926ddHW1hZbt26NefPm5R+7du3aaGlpidbW1ti4cWPU1NR8JO7WrFkTS5YsiTvvvDM6OjqitbU1Fi9eHKtXry7WKQEADAkjijXxtGnTYunSpRERcfbZZ8cDDzwQzz33XEREvPzyy7Ft27aoq6uLiIjHHnsszjnnnHjhhRfiggsuiBUrVkRzc3M0NzdHRMTy5cvj2Wef7XUVcOnSpfGtb30rPvvZz0ZExIQJE2LLli3x0EMPxbXXXluUc+ru7o7u7u78+11dXUU5DgBAMRXtCuC0adN6vV9TUxN79uyJjo6OqKury8dfRMTUqVNj/Pjx0dHRERERHR0dMWPGjF6PnzlzZv7td955Jzo7O6O5uTnGjh2bvy1fvjw6OzuLdUpx1113RUVFRf526DkAAAwWRbsCOHLkyF7v53K56OnpKcjcb7/9dkRErFy58iOhOHz48IIc43Buv/32uOWWW/Lvd3V1iUAAYNApWgAeyZQpU2LHjh2xY8eOfDxt2bIl9u3bF1OnTs2PaW9vj2uuuSb/uA0bNuTfrqqqitra2ti6dWvMnz+/ZGsvKyuLsrKykh0PAKAYSh6ADQ0NUV9fH/Pnz48VK1bE+++/HzfddFPMmjUrpk+fHhERN998c1x33XUxffr0uOSSS2LNmjWxefPmmDhxYn6eZcuWxcKFC6OioiIaGxuju7s7Nm7cGG+++Wavq3RHsn379ti7d29s3749Pvjgg9i0aVNEREyaNCnGjh1blHMHABgISh6AuVwunnrqqfjyl78cl112WQwbNiwaGxvj/vvvz4+ZN29edHZ2xqJFi+LAgQPxuc99LhYsWBDPPPNMfsz1118fJ598ctx7771x6623xpgxY6K+vj6+8pWv9GkdS5Ys6fWK4c985jMREfHDH/4wZs+eXZBzBQAYiHJZlmX9vYjBqqurKyoqKmL//v1RXl5etOPkch/+eaRn6uD9Bx3tGT3WXIUcM5iPV8i5jndMLnfs57ovcx1tXF/GHDq2lM9fIZ+XQqyrr2s/OHYw/f0r5D4dHFfK568vBvLn50D6GjRQj1cspfr+PZAl+z+BAACkakgGYGtra69fD3Pobc6cOf29PACAflXyfwNYCjfeeGM0NTUd9r7Ro0eXeDUAAAPLkAzAysrKqKys7O9lAAAMSEPyR8AAAByZAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEjMiP5eAMeWZSd2//GOLdSYwXy8Qs51vGOONr7U+9mXsYN1zws9V1/GDrTzK+Q+9XVcofe8lMcbaM9fCsejeFwBBABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMABzAcrkPb8caU8i5CjFmKByvVGsfyPtZqjUVci7HO765CjHP8Ryv0Od3tLEpPH+pH48TIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEjNoArClpSXOO++8/l4GAMCgN2gCsND27t0b8+fPj/Ly8hg/fnw0NzfH22+/3d/LAgAoumQDcP78+bF58+Zoa2uLp59+Ov7rv/4rvvSlL/X3sgAAiq4oATh79uxYuHBhLFq0KCorK6O6ujpaWlry92/fvj3mzp0bY8eOjfLy8mhqaordu3f3muPuu++OqqqqGDduXDQ3N8eBAwc+cpxVq1bFlClTYtSoUTF58uR48MEH+7S+jo6O+I//+I9YtWpVzJgxIy699NK4//774/HHH4+dO3ee0LkDAAx0RbsCuHr16hgzZky0t7fHPffcE3fccUe0tbVFT09PzJ07N/bu3Rvr1q2Ltra22Lp1a8ybNy//2LVr10ZLS0u0trbGxo0bo6am5iNxt2bNmliyZEnceeed0dHREa2trbF48eJYvXr1Mde2fv36GD9+fEyfPj3/sYaGhhg2bFi0t7cf8XHd3d3R1dXV6wYAMNiMKNbE06ZNi6VLl0ZExNlnnx0PPPBAPPfccxER8fLLL8e2bduirq4uIiIee+yxOOecc+KFF16ICy64IFasWBHNzc3R3NwcERHLly+PZ599ttdVwKVLl8a3vvWt+OxnPxsRERMmTIgtW7bEQw89FNdee+1R17Zr1644/fTTe31sxIgRUVlZGbt27Tri4+66665YtmzZce4EAMDAUrQrgNOmTev1fk1NTezZsyc6Ojqirq4uH38REVOnTo3x48dHR0dHRHz4I9oZM2b0evzMmTPzb7/zzjvR2dkZzc3NMXbs2Pxt+fLl0dnZWaxTittvvz3279+fv+3YsaNoxwIAKJaiXQEcOXJkr/dzuVz09PQUZO6Dr9ZduXLlR0Jx+PDhx3x8dXV17Nmzp9fH3n///di7d29UV1cf8XFlZWVRVlb2MVYMADBwlPxVwFOmTIkdO3b0unq2ZcuW2LdvX0ydOjU/5vf/Ld6GDRvyb1dVVUVtbW1s3bo1Jk2a1Os2YcKEY65h5syZsW/fvnjxxRfzH/vP//zP6Onp+UhQAgAMNUW7AngkDQ0NUV9fH/Pnz48VK1bE+++/HzfddFPMmjUr/6KMm2++Oa677rqYPn16XHLJJbFmzZrYvHlzTJw4MT/PsmXLYuHChVFRURGNjY3R3d0dGzdujDfffDNuueWWo65hypQp0djYGDfccEP84z/+Y7z33nvxN3/zN/GFL3whamtri3r+AAD9reRXAHO5XDz11FNxyimnxGWXXRYNDQ0xceLEeOKJJ/Jj5s2bF4sXL45FixbF+eefH6+//nosWLCg1zzXX399rFq1Kh555JGor6+PWbNmxaOPPtqnK4ARH76KePLkyXHFFVfEn/7pn8all14aDz/8cEHPFQBgIMplWZb19yIGq66urqioqIj9+/dHeXl5wefP5T7882jPUC539PuPd65CjBkKxyvkXAPx/PpyvFKtqZBzOd7xzVWIeY7neIUYc+i4o41N4flL/XgnotjfvweDZP8nEACAVA3JAGxtbe3162EOvc2ZM6e/lwcA0K9K/iKQUrjxxhujqanpsPeNHj26xKsBABhYhmQAVlZWRmVlZX8vAwBgQBqSPwIGAODIBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYkb09wI4siwrzJhCzuV4jud4jud4jjcQjseJcQUQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMSP6ewGDWZZlERHR1dXVzysBAPrq4Pftg9/HUyQAT8Bbb70VERF1dXX9vBIA4Hi99dZbUVFR0d/L6Be5LOX8PUE9PT2xc+fOGDduXORyuYLN29XVFXV1dbFjx44oLy8v2Lz0Zp9Lwz6Xjr0uDftcGsXc5yzL4q233ora2toYNizNfw3nCuAJGDZsWJxxxhlFm7+8vNwXlxKwz6Vhn0vHXpeGfS6NYu1zqlf+DkozewEAEiYAAQASIwAHoLKysli6dGmUlZX191KGNPtcGva5dOx1adjn0rDPxeVFIAAAiXEFEAAgMQIQACAxAhAAIDECEAAgMQKwBL7zne/EJz/5yRg1alTMmDEjnn/++aOO/9d//deYPHlyjBo1Kurr6+P73/9+r/uzLIslS5ZETU1NjB49OhoaGuLVV18t5ikMCoXe5yeffDKuvPLKOPXUUyOXy8WmTZuKuPrBpZB7/d5778Vtt90W9fX1MWbMmKitrY1rrrkmdu7cWezTGPAK/Tnd0tISkydPjjFjxsQpp5wSDQ0N0d7eXsxTGBQKvc+HuvHGGyOXy8WKFSsKvOrBqdB7fd1110Uul+t1a2xsLOYpDB0ZRfX4449nJ510UvZP//RP2ebNm7MbbrghGz9+fLZ79+7Djv/JT36SDR8+PLvnnnuyLVu2ZH/3d3+XjRw5Mnv55ZfzY+6+++6soqIi+/d///fsf//3f7OrrroqmzBhQva73/2uVKc14BRjnx977LFs2bJl2cqVK7OIyF566aUSnc3AVui93rdvX9bQ0JA98cQT2c9+9rNs/fr12YUXXpidf/75pTytAacYn9Nr1qzJ2trass7OzuyVV17Jmpubs/Ly8mzPnj2lOq0Bpxj7fNCTTz6ZnXvuuVltbW327W9/u8hnMvAVY6+vvfbarLGxMfv1r3+dv+3du7dUpzSoCcAiu/DCC7O//uu/zr//wQcfZLW1tdldd9112PFNTU3Zn/3Zn/X62IwZM7K/+qu/yrIsy3p6erLq6urs3nvvzd+/b9++rKysLPuXf/mXIpzB4FDofT7Utm3bBOAhirnXBz3//PNZRGSvv/56YRY9CJVin/fv359FRPbss88WZtGDULH2+Ze//GX2h3/4h9krr7ySnXnmmQIwK85eX3vttdncuXOLst6hzo+Ai+jdd9+NF198MRoaGvIfGzZsWDQ0NMT69esP+5j169f3Gh8R8Sd/8if58du2bYtdu3b1GlNRUREzZsw44pxDXTH2mcMr1V7v378/crlcjB8/viDrHmxKsc/vvvtuPPzww1FRURHnnntu4RY/iBRrn3t6euLqq6+OW2+9Nc4555ziLH6QKebn9I9+9KM4/fTT49Of/nQsWLAg3njjjcKfwBAkAIvoN7/5TXzwwQdRVVXV6+NVVVWxa9euwz5m165dRx1/8M/jmXOoK8Y+c3il2OsDBw7EbbfdFl/84heL8h/ADwbF3Oenn346xo4dG6NGjYpvf/vb0dbWFqeddlphT2CQKNY+f/Ob34wRI0bEwoULC7/oQapYe93Y2BiPPfZYPPfcc/HNb34z1q1bF3PmzIkPPvig8CcxxIzo7wUAHPTee+9FU1NTZFkW//AP/9DfyxmSLr/88ti0aVP85je/iZUrV0ZTU1O0t7fH6aef3t9LGxJefPHF+Pu///v4n//5n8jlcv29nCHvC1/4Qv7t+vr6mDZtWpx11lnxox/9KK644op+XNnA5wpgEZ122mkxfPjw2L17d6+P7969O6qrqw/7mOrq6qOOP/jn8cw51BVjnzm8Yu71wfh7/fXXo62tLdmrfxHF3ecxY8bEpEmT4qKLLorvfve7MWLEiPjud79b2BMYJIqxzz/+8Y9jz5498YlPfCJGjBgRI0aMiNdffz3+9m//Nj75yU8W5TwGg1J9nZ44cWKcdtpp8dprr534ooc4AVhEJ510Upx//vnx3HPP5T/W09MTzz33XMycOfOwj5k5c2av8RERbW1t+fETJkyI6urqXmO6urqivb39iHMOdcXYZw6vWHt9MP5effXVePbZZ+PUU08tzgkMEqX8nO7p6Ynu7u4TX/QgVIx9vvrqq+OnP/1pbNq0KX+rra2NW2+9NZ555pnincwAV6rP6V/+8pfxxhtvRE1NTWEWPpT196tQhrrHH388Kysryx599NFsy5Yt2Ze+9KVs/Pjx2a5du7Isy7Krr746+/rXv54f/5Of/CQbMWJEdt9992UdHR3Z0qVLD/trYMaPH5899dRT2U9/+tNs7ty5fg1MEfb5jTfeyF566aXse9/7XhYR2eOPP5699NJL2a9//euSn99AUui9fvfdd7OrrroqO+OMM7JNmzb1+nUO3d3d/XKOA0Gh9/ntt9/Obr/99mz9+vXZL37xi2zjxo3ZX/7lX2ZlZWXZK6+80i/nOBAU42vH7/Mq4A8Veq/feuut7Gtf+1q2fv36bNu2bdmzzz6b/dEf/VF29tlnZwcOHOiXcxxMBGAJ3H///dknPvGJ7KSTTsouvPDCbMOGDfn7Zs2alV177bW9xq9duzb71Kc+lZ100knZOeeck33ve9/rdX9PT0+2ePHirKqqKisrK8uuuOKK7Oc//3kpTmVAK/Q+P/LII1lEfOS2dOnSEpzNwFbIvT74a3YOd/vhD39YojMamAq5z7/73e+yP//zP89qa2uzk046Kaupqcmuuuqq7Pnnny/V6QxYhf7a8fsE4P9XyL3+7W9/m1155ZXZH/zBH2QjR47MzjzzzOyGG27IByVHl8uyLOufa48AAPQH/wYQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAx/w/U1yoZpsbtzAAAAABJRU5ErkJggg==", "text/html": [ "\n", "