{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import json\n", "\n", "import matplotlib.pyplot as plt\n", "from dataclasses import dataclass\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "this_dir = os.path.dirname(os.path.abspath(''))\n", "# results is in \"../results\"\n", "results_dir = os.path.join(this_dir, \"results\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "experiment_folder = \"casestudy_example\"\n", "experiment_name = \"cs_example_edf\"\n", "\n", "experiment_file = os.path.join(results_dir, experiment_folder, experiment_name + \".json\")\n", "if not os.path.exists(experiment_file):\n", " print(\"Experiment file not found: \", experiment_file)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "with open(experiment_file) as f:\n", " experiment_data_raw = json.load(f)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of records: 11799\n", "First record: {'entry': {'operation': 'start_work', 'chain': 0, 'node': 'node_0', 'count': 500, 'next_release_us': 99881}, 'time': 0.0001}\n", "Operation types: ['get_next_executable', 'next_deadline', 'wait_for_work', 'start_work', 'end_work']\n" ] } ], "source": [ "def pre_process_data(data):\n", " for record in data:\n", " record[\"time\"] = int(record[\"time\"])\n", "\n", " min_time = min([record[\"time\"] for record in data])\n", " for record in data:\n", " record[\"time\"] -= min_time\n", " record[\"time\"] /= (1000 * 1000)\n", "\n", " if record[\"entry\"][\"operation\"] == \"next_deadline\":\n", " #print(\"Record: \", record)\n", " record[\"entry\"][\"deadline\"] = int(record[\"entry\"][\"deadline\"])\n", " record[\"entry\"][\"deadline\"] -= min_time\n", " record[\"entry\"][\"deadline\"] /= (1000 * 1000)\n", "\n", " # data = sorted(data, key=lambda x: x[\"time\"])\n", " return data\n", "\n", "experiment_data = pre_process_data(experiment_data_raw)\n", "\n", "print(\"Number of records: \", len(experiment_data))\n", "print(\"First record: \", experiment_data[0])\n", "operation_types = list(set([record[\"entry\"][\"operation\"] for record in experiment_data]))\n", "print(\"Operation types: \", operation_types)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "@dataclass\n", "class Record:\n", " start_time: float\n", " end_time: float\n", " node_name: str\n", "\n", "@dataclass\n", "class RecordLine:\n", " node_name: str\n", " count: int\n", "\n", " def __eq__(self, other):\n", " return self.node_name == other.node_name and self.count == other.count\n", "\n", " def __hash__(self):\n", " return hash((self.node_name, self.count))\n", "\n", "def get_records(data) -> list[Record]:\n", " # used to match start_work and end_work records\n", " current_records: dict[RecordLine, Record] = {}\n", " records = []\n", " for record in data:\n", " if record[\"entry\"][\"operation\"] == \"start_work\":\n", " current_record = Record(start_time=record[\"time\"], node_name=record[\"entry\"][\"node\"], end_time=None)\n", " current_record_line = RecordLine(node_name=record[\"entry\"][\"node\"], count=record[\"entry\"][\"count\"])\n", " if current_record_line in current_records:\n", " raise Exception(\"Overlapping records\")\n", " current_records[current_record_line] = current_record\n", " elif record[\"entry\"][\"operation\"] == \"end_work\":\n", " current_record_line = RecordLine(node_name=record[\"entry\"][\"node\"], count=record[\"entry\"][\"count\"])\n", " if current_record_line not in current_records:\n", " raise Exception(\"No start record\")\n", " current_record = current_records[current_record_line]\n", " current_record.end_time = record[\"time\"]\n", " records.append(current_record)\n", " del current_records[current_record_line]\n", " return records\n", "\n", "records = get_records(experiment_data)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of nodes: 4\n" ] } ], "source": [ "num_nodes = len(set([record.node_name for record in records]))\n", "print(\"Number of nodes: \", num_nodes)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "020847cef8dc4d5dbb6e2e7ce53ffb31", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJHVJREFUeJzt3X9w1/V9wPHXlx8GBJIYnSGZ0YLYAl7QThRRT7DmXNju5NauoT3OH7toJ27F1lWsdwOCxWjVXtlp3RQ6xTs2ZTdv3tnebHQt63UQxcmqkPY0UKGlwCqSqC3xRz77w+M7UgGDfL/fJLwfj7vvkW++7+/n/f688z3yvE/4hlyWZVkAAJCMYQO9AAAASksAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkZsRAL2Ao6+3tjZ07d8a4ceMil8sN9HIAgH7IsizefPPNqK2tjWHD0rwWJgCPwc6dO6Ourm6glwEAfAw7duyI0047baCXMSAE4DEYN25cRHzwAiovLx/g1QAA/dHd3R11dXX57+MpEoDH4MCPfcvLywUgAAwxKf/zrTR/8A0AkDABCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBOATkcoUZ09/xH3WsXO7/x/Rn7LGs5WjHlHK+Qh7LfP3n9WK+YhyrUMcZjK/P/hqMXz+KRwACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJGbIBGBLS0uce+65A70MAIAhb8gEYKHdcccdcdFFF8WJJ54YlZWVA70cAICSSTYA33nnnfj85z8fCxYsGOilAACUVFECcPbs2bFw4cJYtGhRVFVVxfjx46OlpSX/+Pbt22Pu3LkxduzYKC8vj6ampti9e3efY9x1111RXV0d48aNi+bm5ti/f/+H5lm1alVMmTIlRo0aFZMnT44HHnig32tctmxZfPWrX436+vqPfZ4AAENR0a4Arl69OsaMGRPt7e1x9913x+233x5tbW3R29sbc+fOjb1798a6deuira0ttm7dGvPmzcs/d+3atdHS0hKtra2xcePGqKmp+VDcrVmzJpYsWRJ33HFHdHR0RGtrayxevDhWr15drFMCADgujCjWgadNmxZLly6NiIizzjor7r///nj22WcjIuKll16Kbdu2RV1dXUREPProo3H22WfH888/H+eff36sWLEimpubo7m5OSIili9fHs8880yfq4BLly6Nb33rW/HZz342IiImTJgQW7ZsiQcffDCuueaaopxTT09P9PT05O93d3cXZR4AgGIq2hXAadOm9blfU1MTe/bsiY6Ojqirq8vHX0TE1KlTo7KyMjo6OiIioqOjI2bMmNHn+TNnzsx//Pbbb0dnZ2c0NzfH2LFj87fly5dHZ2dnsU4p7rzzzqioqMjfDj4HAIChomhXAEeOHNnnfi6Xi97e3oIc+6233oqIiJUrV34oFIcPH16QOQ7ltttui5tvvjl/v7u7WwQCAENO0QLwcKZMmRI7duyIHTt25ONpy5YtsW/fvpg6dWp+THt7e1x99dX5523YsCH/cXV1ddTW1sbWrVtj/vz5JVt7WVlZlJWVlWw+AIBiKHkANjQ0RH19fcyfPz9WrFgR7733Xtx4440xa9asmD59ekRE3HTTTXHttdfG9OnT4+KLL441a9bE5s2bY+LEifnjLFu2LBYuXBgVFRXR2NgYPT09sXHjxnjjjTf6XKU7nO3bt8fevXtj+/bt8f7778emTZsiImLSpEkxduzYopw7AMBgUPIAzOVy8eSTT8aXv/zluPTSS2PYsGHR2NgY9913X37MvHnzorOzMxYtWhT79++Pz33uc7FgwYJ4+umn82Ouu+66OPHEE+Oee+6JW265JcaMGRP19fXxla98pV/rWLJkSZ93DH/605+OiIgf/vCHMXv27IKcKwDAYJTLsiwb6EUMVd3d3VFRURFdXV1RXl5etHlyuYiP+ir1Z0x/x3/UsXK5D/7Msv6NLcTa+zvmwLpKMV8hj2W+/vN6MV8xjlWIuQq5pkK+PvtrMH79iqVU378Hs2T/JxAAgFQdlwHY2tra59fDHHybM2fOQC8PAGBAlfzfAJbCDTfcEE1NTYd8bPTo0SVeDQDA4HJcBmBVVVVUVVUN9DIAAAal4/JHwAAAHJ4ABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASMyIgV4AHy3LCjOmv+M/6lgHP340YwfDmMF6LPP131Ddg0Iey3yFP1ahjjMY96C/hvLaOXquAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgACACRGAAIAJEYAAgAkRgAOYrncB7djHXPwuCON7e98/VGotR/N+ZVqTYU8lvkGbr5SramQxzJf6ecbjGsqxnyl3s9C7QMfnwAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASMyQCcCWlpY499xzB3oZAABD3pAJwEL6xS9+Ec3NzTFhwoQYPXp0nHnmmbF06dJ45513BnppAABFN2KgFzAQfvazn0Vvb288+OCDMWnSpHj55Zfj+uuvj7fffjvuvffegV4eAEBRFeUK4OzZs2PhwoWxaNGiqKqqivHjx0dLS0v+8e3bt8fcuXNj7NixUV5eHk1NTbF79+4+x7jrrruiuro6xo0bF83NzbF///4PzbNq1aqYMmVKjBo1KiZPnhwPPPBAv9bX2NgYDz/8cFxxxRUxceLEuPLKK+NrX/taPPHEE8d03gAAQ0HRfgS8evXqGDNmTLS3t8fdd98dt99+e7S1tUVvb2/MnTs39u7dG+vWrYu2trbYunVrzJs3L//ctWvXRktLS7S2tsbGjRujpqbmQ3G3Zs2aWLJkSdxxxx3R0dERra2tsXjx4li9evXHWm9XV1dUVVUdcUxPT090d3f3uQEADDlZEcyaNSu75JJL+nzu/PPPz2699dbsBz/4QTZ8+PBs+/bt+cc2b96cRUT23HPPZVmWZTNnzsxuvPHGPs+fMWNGds455+Tvn3nmmdk//dM/9RnzjW98I5s5c+ZRr/eVV17JysvLs4ceeuiI45YuXZpFxIduXV1dRz1nf0R8cDvWMQePO9LY/s7XH4Va+9GcX6nWVMhjmW/g5ivVmgp5LPOVfr7BuKZizFfq/SzUPnxcXV1dRf3+PRQU7QrgtGnT+tyvqamJPXv2REdHR9TV1UVdXV3+salTp0ZlZWV0dHRERERHR0fMmDGjz/NnzpyZ//jtt9+Ozs7OaG5ujrFjx+Zvy5cvj87OzqNa569+9atobGyMz3/+83H99dcfcextt90WXV1d+duOHTuOai4AgMGgaG8CGTlyZJ/7uVwuent7C3Lst956KyIiVq5c+aFQHD58eL+Ps3Pnzrjsssvioosuioceeugjx5eVlUVZWdnRLRYAYJAp+a+BmTJlSuzYsaPP1bMtW7bEvn37YurUqfkx7e3tfZ63YcOG/MfV1dVRW1sbW7dujUmTJvW5TZgwoV/r+NWvfhWzZ8+O8847Lx5++OEYNizJ34gDACSo5L8GpqGhIerr62P+/PmxYsWKeO+99+LGG2+MWbNmxfTp0yMi4qabboprr702pk+fHhdffHGsWbMmNm/eHBMnTswfZ9myZbFw4cKoqKiIxsbG6OnpiY0bN8Ybb7wRN9988xHXcCD+zjjjjLj33nvjf//3f/OPjR8/vjgnDgAwSJQ8AHO5XDz55JPx5S9/OS699NIYNmxYNDY2xn333ZcfM2/evOjs7IxFixbF/v3743Of+1wsWLAgnn766fyY6667Lk488cS455574pZbbokxY8ZEfX19fOUrX/nINbS1tcWrr74ar776apx22ml9HsuyrGDnCgAwGOUyxfOxdXd3R0VFRXR1dUV5eXnBj5/LffDnkb5C/Rlz8Lgjje3vfP15xRRq7Udzfv3dg0LuZynPz3yFnc/rxXxDdU3FmK+QxyrVfMei2N+/hwL/8A0AIDHHZQC2trb2+fUwB9/mzJkz0MsDABhQx+X/BXzDDTdEU1PTIR8bPXp0iVcDADC4HJcBWFVV9ZH/rRsAQKqOyx8BAwBweAIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMSMGegEcXpYVZkwhj2U+85nPfCnNNxjXZD4KwRVAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECMAhIJcrzJhCzZfL/f+Y/ow91vmOZkwp5yvksczXf14v5ivGsQp1nMH4+uyvwfj1o3gEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBihkwAtrS0xLnnnjvQywAAGPKGTAAW2pVXXhmnn356jBo1KmpqauKqq66KnTt3DvSyAACKLtkAvOyyy2Lt2rXx85//PP71X/81Ojs748///M8HelkAAEVXlACcPXt2LFy4MBYtWhRVVVUxfvz4aGlpyT++ffv2mDt3bowdOzbKy8ujqakpdu/e3ecYd911V1RXV8e4ceOiubk59u/f/6F5Vq1aFVOmTIlRo0bF5MmT44EHHuj3Gr/61a/GhRdeGGeccUZcdNFF8fWvfz02bNgQ77777sc+bwCAoaBoVwBXr14dY8aMifb29rj77rvj9ttvj7a2tujt7Y25c+fG3r17Y926ddHW1hZbt26NefPm5Z+7du3aaGlpidbW1ti4cWPU1NR8KO7WrFkTS5YsiTvuuCM6OjqitbU1Fi9eHKtXrz7qte7duzfWrFkTF110UYwcOfKYzx0AYDDLZVmWFfqgs2fPjvfffz9+/OMf5z93wQUXxGc+85m4/PLLY86cObFt27aoq6uLiIgtW7bE2WefHc8991ycf/75cdFFF8WnP/3p+M53vpN//oUXXhj79++PTZs2RUTEpEmT4hvf+EZ88YtfzI9Zvnx5fP/734//+q//6tc6b7311rj//vvjt7/9bVx44YXx1FNPxcknn3zY8T09PdHT05O/393dHXV1ddHV1RXl5eX9mvPjyOUiPuqr1J8xhZovl/vgzyzr39hCrL2/Yw6sqxTzFfJY5us/rxfzFeNYhZirkGsq5Ouzvwbj169Yuru7o6Kioujfvwezol0BnDZtWp/7NTU1sWfPnujo6Ii6urp8/EVETJ06NSorK6OjoyMiIjo6OmLGjBl9nj9z5sz8x2+//XZ0dnZGc3NzjB07Nn9bvnx5dHZ29nuNt9xyS7z44ovxgx/8IIYPHx5XX311HKmH77zzzqioqMjfDj4HAIChYkSxDvz7P0rN5XLR29tbkGO/9dZbERGxcuXKD4Xi8OHD+32cU045JU455ZT45Cc/GVOmTIm6urrYsGFDn9g82G233RY333xz/v6BK4AAAENJ0QLwcKZMmRI7duyIHTt29PkR8L59+2Lq1Kn5Me3t7XH11Vfnn7dhw4b8x9XV1VFbWxtbt26N+fPnF2RdB+L04B/x/r6ysrIoKysryHwAAAOl5AHY0NAQ9fX1MX/+/FixYkW89957ceONN8asWbNi+vTpERFx0003xbXXXhvTp0+Piy++ONasWRObN2+OiRMn5o+zbNmyWLhwYVRUVERjY2P09PTExo0b44033uhzle5Q2tvb4/nnn49LLrkkTjrppOjs7IzFixfHmWeeedirfwAAx4uS/x7AXC4XTz75ZJx00klx6aWXRkNDQ0ycODEef/zx/Jh58+bF4sWLY9GiRXHeeefFa6+9FgsWLOhznOuuuy5WrVoVDz/8cNTX18esWbPikUceiQkTJnzkGk488cR44okn4vLLL49PfepT0dzcHNOmTYt169a5wgcAHPeK8i7gVJTqXUSD7V2W3gVc+GOZr/+8XsxXjGMVYq5Crsm7gIvLu4AT/p9AAABSdVwGYGtra59fD3Pwbc6cOQO9PACAAVXyN4GUwg033BBNTU2HfGz06NElXg0AwOByXAZgVVVVVFVVDfQyAAAGpePyR8AAAByeAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEiMAAQASIwABABIjAAEAEjMiIFeAB8tywozplDzHfz40YwdDGMG67HM139DdQ8KeSzzFf5YhTrOYNyD/hrKa+fouQIIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBOIjlch/cjnXMweOONLa/8/VHodZ+NOdXqjUV8ljmG7j5SrWmQh7LfKWfbzCuqRjzlXo/C7UPfHwCEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxQyYAW1pa4txzzx3oZQAADHlDJgALbe/evTF//vwoLy+PysrKaG5ujrfeemuglwUAUHTJBuD8+fNj8+bN0dbWFk899VT853/+Z3zpS18a6GUBABRdUQJw9uzZsXDhwli0aFFUVVXF+PHjo6WlJf/49u3bY+7cuTF27NgoLy+Ppqam2L17d59j3HXXXVFdXR3jxo2L5ubm2L9//4fmWbVqVUyZMiVGjRoVkydPjgceeKBf6+vo6Ih///d/j1WrVsWMGTPikksuifvuuy8ee+yx2Llz5zGdOwDAYFe0K4CrV6+OMWPGRHt7e9x9991x++23R1tbW/T29sbcuXNj7969sW7dumhra4utW7fGvHnz8s9du3ZttLS0RGtra2zcuDFqamo+FHdr1qyJJUuWxB133BEdHR3R2toaixcvjtWrV3/k2tavXx+VlZUxffr0/OcaGhpi2LBh0d7eftjn9fT0RHd3d58bAMBQM6JYB542bVosXbo0IiLOOuusuP/+++PZZ5+NiIiXXnoptm3bFnV1dRER8eijj8bZZ58dzz//fJx//vmxYsWKaG5ujubm5oiIWL58eTzzzDN9rgIuXbo0vvWtb8VnP/vZiIiYMGFCbNmyJR588MG45pprjri2Xbt2xamnntrncyNGjIiqqqrYtWvXYZ935513xrJly45yJwAABpeiXQGcNm1an/s1NTWxZ8+e6OjoiLq6unz8RURMnTo1Kisro6OjIyI++BHtjBkz+jx/5syZ+Y/ffvvt6OzsjObm5hg7dmz+tnz58ujs7CzWKcVtt90WXV1d+duOHTuKNhcAQLEU7QrgyJEj+9zP5XLR29tbkGMfeLfuypUrPxSKw4cP/8jnjx8/Pvbs2dPnc++9917s3bs3xo8ff9jnlZWVRVlZ2cdYMQDA4FHydwFPmTIlduzY0efq2ZYtW2Lfvn0xderU/Jjf/7d4GzZsyH9cXV0dtbW1sXXr1pg0aVKf24QJEz5yDTNnzox9+/bFCy+8kP/cf/zHf0Rvb++HghIA4HhTtCuAh9PQ0BD19fUxf/78WLFiRbz33ntx4403xqxZs/Jvyrjpppvi2muvjenTp8fFF18ca9asic2bN8fEiRPzx1m2bFksXLgwKioqorGxMXp6emLjxo3xxhtvxM0333zENUyZMiUaGxvj+uuvj3/4h3+Id999N/76r/86vvCFL0RtbW1Rzx8AYKCV/ApgLpeLJ598Mk466aS49NJLo6GhISZOnBiPP/54fsy8efNi8eLFsWjRojjvvPPitddeiwULFvQ5znXXXRerVq2Khx9+OOrr62PWrFnxyCOP9OsKYMQH7yKePHlyXH755fEnf/Incckll8RDDz1U0HMFABiMclmWZQO9iKGqu7s7KioqoqurK8rLywt+/Fzugz+P9BXqz5iDxx1pbH/n688rplBrP5rz6+8eFHI/S3l+5ivsfF4v5huqayrGfIU8VqnmOxbF/v49FCT7P4EAAKTquAzA1tbWPr8e5uDbnDlzBnp5AAADquRvAimFG264IZqamg752OjRo0u8GgCAweW4DMCqqqqoqqoa6GUAAAxKx+WPgAEAODwBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJAYAQgAkBgBCACQGAEIAJCYEQO9AA4vywozppDHMp/5zGe+lOYbjGsyH4XgCiAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiBCAAQGIEIABAYgQgAEBiRgz0AoayLMsiIqK7u3uAVwIA9NeB79sHvo+nSAAegzfffDMiIurq6gZ4JQDA0XrzzTejoqJioJcxIHJZyvl7jHp7e2Pnzp0xbty4yOVyBTtud3d31NXVxY4dO6K8vLxgx6Uv+1wa9rl07HVp2OfSKOY+Z1kWb775ZtTW1sawYWn+azhXAI/BsGHD4rTTTiva8cvLy/3lUgL2uTTsc+nY69Kwz6VRrH1O9crfAWlmLwBAwgQgAEBiBOAgVFZWFkuXLo2ysrKBXspxzT6Xhn0uHXtdGva5NOxzcXkTCABAYlwBBABIjAAEAEiMAAQASIwABABIjAAsge985zvxiU98IkaNGhUzZsyI55577ojj/+Vf/iUmT54co0aNivr6+vj+97/f5/Esy2LJkiVRU1MTo0ePjoaGhnjllVeKeQpDQqH3+YknnogrrrgiTj755MjlcrFp06Yirn5oKeRev/vuu3HrrbdGfX19jBkzJmpra+Pqq6+OnTt3Fvs0Br1Cv6ZbWlpi8uTJMWbMmDjppJOioaEh2tvbi3kKQ0Kh9/lgN9xwQ+RyuVixYkWBVz00FXqvr7322sjlcn1ujY2NxTyF40dGUT322GPZCSeckP3jP/5jtnnz5uz666/PKisrs927dx9y/E9+8pNs+PDh2d13351t2bIl+9u//dts5MiR2UsvvZQfc9ddd2UVFRXZv/3bv2X/8z//k1155ZXZhAkTst/97nelOq1Bpxj7/Oijj2bLli3LVq5cmUVE9uKLL5bobAa3Qu/1vn37soaGhuzxxx/Pfvazn2Xr16/PLrjgguy8884r5WkNOsV4Ta9ZsyZra2vLOjs7s5dffjlrbm7OysvLsz179pTqtAadYuzzAU888UR2zjnnZLW1tdm3v/3tIp/J4FeMvb7mmmuyxsbG7Ne//nX+tnfv3lKd0pAmAIvsggsuyP7qr/4qf//999/PamtrszvvvPOQ45uamrI//dM/7fO5GTNmZH/5l3+ZZVmW9fb2ZuPHj8/uueee/OP79u3LysrKsn/+538uwhkMDYXe54Nt27ZNAB6kmHt9wHPPPZdFRPbaa68VZtFDUCn2uaurK4uI7JlnninMooegYu3zL3/5y+wP//APs5dffjk744wzBGBWnL2+5pprsrlz5xZlvcc7PwIuonfeeSdeeOGFaGhoyH9u2LBh0dDQEOvXrz/kc9avX99nfETEH//xH+fHb9u2LXbt2tVnTEVFRcyYMeOwxzzeFWOfObRS7XVXV1fkcrmorKwsyLqHmlLs8zvvvBMPPfRQVFRUxDnnnFO4xQ8hxdrn3t7euOqqq+KWW26Js88+uziLH2KK+Zr+0Y9+FKeeemp86lOfigULFsTrr79e+BM4DgnAIvrNb34T77//flRXV/f5fHV1dezateuQz9m1a9cRxx/482iOebwrxj5zaKXY6/3798ett94aX/ziF4vyH8APBcXc56eeeirGjh0bo0aNim9/+9vR1tYWp5xySmFPYIgo1j5/85vfjBEjRsTChQsLv+ghqlh73djYGI8++mg8++yz8c1vfjPWrVsXc+bMiffff7/wJ3GcGTHQCwA44N13342mpqbIsiz+/u//fqCXc1y67LLLYtOmTfGb3/wmVq5cGU1NTdHe3h6nnnrqQC/tuPDCCy/E3/3d38V///d/Ry6XG+jlHPe+8IUv5D+ur6+PadOmxZlnnhk/+tGP4vLLLx/AlQ1+rgAW0SmnnBLDhw+P3bt39/n87t27Y/z48Yd8zvjx4484/sCfR3PM410x9plDK+ZeH4i/1157Ldra2pK9+hdR3H0eM2ZMTJo0KS688ML47ne/GyNGjIjvfve7hT2BIaIY+/zjH/849uzZE6effnqMGDEiRowYEa+99lr8zd/8TXziE58oynkMBaX6e3rixIlxyimnxKuvvnrsiz7OCcAiOuGEE+K8886LZ599Nv+53t7eePbZZ2PmzJmHfM7MmTP7jI+IaGtry4+fMGFCjB8/vs+Y7u7uaG9vP+wxj3fF2GcOrVh7fSD+XnnllXjmmWfi5JNPLs4JDBGlfE339vZGT0/PsS96CCrGPl911VXx05/+NDZt2pS/1dbWxi233BJPP/108U5mkCvVa/qXv/xlvP7661FTU1OYhR/PBvpdKMe7xx57LCsrK8seeeSRbMuWLdmXvvSlrLKyMtu1a1eWZVl21VVXZV//+tfz43/yk59kI0aMyO69996so6MjW7p06SF/DUxlZWX25JNPZj/96U+zuXPn+jUwRdjn119/PXvxxRez733ve1lEZI899lj24osvZr/+9a9Lfn6DSaH3+p133smuvPLK7LTTTss2bdrU59c59PT0DMg5DgaF3ue33noru+2227L169dnv/jFL7KNGzdmf/EXf5GVlZVlL7/88oCc42BQjL87fp93AX+g0Hv95ptvZl/72tey9evXZ9u2bcueeeaZ7I/+6I+ys846K9u/f/+AnONQIgBL4L777stOP/307IQTTsguuOCCbMOGDfnHZs2alV1zzTV9xq9duzb75Cc/mZ1wwgnZ2WefnX3ve9/r83hvb2+2ePHirLq6OisrK8suv/zy7Oc//3kpTmVQK/Q+P/zww1lEfOi2dOnSEpzN4FbIvT7wa3YOdfvhD39YojManAq5z7/73e+yP/uzP8tqa2uzE044IaupqcmuvPLK7LnnnivV6Qxahf674/cJwP9XyL3+7W9/m11xxRXZH/zBH2QjR47MzjjjjOz666/PByVHlsuyLBuYa48AAAwE/wYQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAxAhAAIDECEAAgMQIQACAx/wetCVTe1NhmyAAAAABJRU5ErkJggg==", "text/html": [ "\n", "